Skip to main content
Log in

Combining neuropharmacology and behavior to study motion detection in flies

  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

The optomotor following response, a behavior based on movement detection was recorded in the fruitflyDrosophila melanogaster before and after the injection of picrotoxinin, an antagonist of the inhibitory neurotransmitter GABA. The directional selectivity of this response was transiently abolished or inverted after injection. This result is in agreement with picrotoxinin-induced modifications observed in electrophysiological activity of direction-selective cells in flies (Bülthoff and Schmid 1983; Schmid and Bülthoff, in preparation). Furthermore, walking and flying flies treated with picrotoxinin followed more actively motion from back to front instead of front to back as in normal animals. Since the difference in the responses to front to back and back to front motions is proposed to be the basis of fixation behavior in flies (Reichardt 1973) our results support this notion and are inconsistent with schemes explaining fixation by alternative mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Benzer S (1967) Behavioral mutants ofDrosophila melanogaster isolated by countercurrent distribution. Proc Natl Acad Sci USA 58:1112–1119

    Google Scholar 

  • Buchner E (1976) Elementary movement detectors in an insect visual system. Biol Cybern 24:85–101

    Article  Google Scholar 

  • Buchner E (1984) Behavioral analysis of spatial vision in insects. In: Ali A (ed) Photoreception and vision in invertebrates. Plenum Press, New York, pp 561–621

    Google Scholar 

  • Buchner E, Buchner S (1980) Mapping stimulus-induced nervous activity in small brain by 3H-2-deoxyglucose. Cell Tissue Res 211:51–64

    Article  PubMed  Google Scholar 

  • Buchner E, Buchner S, Hengstenberg R (1979) 2-deoxy-D-glucose maps movement-specific nervous activity in the second visual ganglion ofDrosophila. Science 205:687–688

    PubMed  Google Scholar 

  • Buchner, E., Buchner S, Bülthoff I (1984) Deoxyglucose mapping of nervous activity induced inDrosophila brain by visual movement. I. Wildtype. J Comp Physiol 155:471–483

    Article  Google Scholar 

  • Bülthoff H (1981) Figure-ground discrimination in the visual system ofDrosophila melanogaster. Biol Cybern 41:139–145

    Article  Google Scholar 

  • Bülthoff H (1982)Drosophila mutants disturbed in visual orientation. II. Mutants affected in movement and position computation. Biol Cybern 45:71–77

    Article  Google Scholar 

  • Bülthoff I, Buchner E (1985) Deoxyglucose mapping of nervous activity induced inDrosophila brain by visual movement. II. Optomotor blindH31 and lobula plate-lessN684 visual mutants. J Comp Physiol A 156:25–34

    Article  Google Scholar 

  • Bülthoff H, Bülthoff I (1985a) Umkehrung der Bewegungs- und Objektwahrnehmung durch einen GABA-Antagonisten bei Fliegen. Verh Dtsch Zool Ges 78:223

    Google Scholar 

  • Bülthoff H, Bülthoff I (1985b) Pharmacological inversion of directional specificity in movement detectors. Invest Ophtalmol Vis Sci 26:56

    Google Scholar 

  • Bülthoff H, Schmid A (1983) Neuropharmakologische Untersuchungen bewegungsempfindlicher Interneurone in der Lobula Platte der Fliege. Verh Dtsch Zool Ges 76:273

    Google Scholar 

  • Bülthoff H, Wehrhahn C (1984) Computation of motion and position in the visual system of the fly (Musca). Experiments with uniform stimulation. In: Varjú D, Schnitzler H-U (eds) Localization and orientation in biology and engineering. Springer, Berlin Heidelberg New York, pp 149–152

    Google Scholar 

  • Bülthoff H, Bülthoff I, Schmid A (1984) Beeinflussung der Bewegungsdetektion durch Neuropharmaka. Verh Dtsch Zool Ges 77:276

    Google Scholar 

  • Bülthoff H, Bülthoff I (1986) GABA-Antagonist inverts movement and object detection in flies. Brain Res (in press)

  • Geiger G (1981) Is there a motion-independent position computation of an object in the visual system of the housefly? Biol Cybern 40:71–75

    Article  Google Scholar 

  • Geiger G, Nässel DR (1981) Visual orientation behavior of fly after selective laser beam ablation of interneurons. Nature 293:398–399

    Article  PubMed  Google Scholar 

  • Geiger G, Nässel DR (1982) Visual processing of moving single objects and wide-field patterns in flies: behavioral analysis after laser-surgical removal of interneurons. Biol Cybern 44:141–149

    Article  Google Scholar 

  • Götz KG (1975a) The optomotor equilibrium of theDrosophila navigation system. J Comp Physiol 99:187–210

    Article  Google Scholar 

  • Götz KG (1975b) Hirnforschung am Navigationssystem der Fliegen. Naturwissenschaften 62:468–475

    Article  Google Scholar 

  • Götz KG (1983) Genetic defects of visual orientation inDrosophila. Verh Dtsch Zool Ges 1976:83–89

    Google Scholar 

  • Götz KG, Hengstenberg B, Biesinger R (1979) Optomotor control of wingbeat and body posture inDrosophila. Biol cybern 35:101–112

    Article  Google Scholar 

  • Hausen K (1981) Monocular and binocular computation of motion in the lobula plate of the fly. Verh Dtsch Zool Ges 1984:49–70

    Google Scholar 

  • Hausen K (1984) The lobula-complex of the fly: structure, function and significance in visual behavior. In: Ali A (ed) Photoreception and vision in invertebrates. Plenum Press, New York, pp 523–559

    Google Scholar 

  • Hausen K, Wehrhahn C (1983) Microsurgical lesíon of horizontal cells changes optomotor yaw responses in the blow-flyCalliphora erythrocephala. Proc R Soc London B 219:211–216

    Google Scholar 

  • Heisenberg M, Böhl K (1979) Isolation of anatomical brain mutants ofDrosophila by histological means. Z Naturforsch 34 C:143–147

    Google Scholar 

  • Heisenberg M, Wolf R (1984) Vision inDrosophila. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Heisenberg M, Wonneberger R, Wolf R (1978) Optomotor-blindH31 aDrosophila mutant of the lobula plate giant neurons. J Comp Physiol 124:287–296

    Article  Google Scholar 

  • Hengstenberg R (1982) Common visual response properties of giant vertical cells in the lobula plate of the blowflyCalliphora. J Comp Physiol 169:179–193

    Article  Google Scholar 

  • Pick B (1974) Visual flicker induces orientation behavior in the flyMusca. Z Naturforsch 29 C:310–312

    Google Scholar 

  • Pick B (1976) Visual pattern discrimination as an element of the fly's orientation behavior. Biol Cyberm 23:171–180

    Article  Google Scholar 

  • Poggio T, Reichardt W (1976) Visual control of orientation behavior in the fly. Part II. Toward the underlying neural interactions. Q Rev Biophys 9:377–438

    PubMed  Google Scholar 

  • Reichardt W (1973) Musterinduzierte Flugorientierung. Verhaltensversuche an der FliegeMusca domestica. Naturwissenschaften 60:122–138

    Article  Google Scholar 

  • Reichardt W, Poggio T (1976) Visual control of orientation behavior in the fly. Part I. A quantitative analysis. Q Rev Biophys 9:311–375

    PubMed  Google Scholar 

  • Takeuchi A, Takeuchi N (1969) A study of the action of picrotoxin on the inhibitory neuromuscular junction of the crayfish. J Physiol 205:377–391

    PubMed  Google Scholar 

  • Wehrhahn C, Hausen K (1980) How is tracking and fixation accomplished in the nervous system of the fly? Biol Cybern 38:179–186

    Article  Google Scholar 

  • Yarom Y, Grossman Y, Gutnik MJ, Spira ME (1982) Transient extracellular potassium accumulation produced prolonged depolarizations during synchronized bursts in picrotoxin treated cockroach CNS. J Neurophysiol 48:1089–1097

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bülthoff, H., Bülthoff, I. Combining neuropharmacology and behavior to study motion detection in flies. Biol. Cybernetics 55, 313–320 (1987). https://doi.org/10.1007/BF02281977

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02281977

Keywords

Navigation