Advertisement

Chromatographia

, Volume 15, Issue 9, pp 599–610 | Cite as

Crosslinking of alkylpolysiloxane filsm on various types of glass surfaces including fused silica using γ-radiation of a60cobalt-source. Comparison to crosslinking by thermal peroxid treatment

  • G. Schomburg
  • H. Husmann
  • S. Ruthe
  • M. Herraiz
Originals

Summary

Crosslinking of alkylpolysiloxane stationary phases, especially in thick film capillary columns, is useful for the homogenous coating of fused silica and pretreated alkaliglass surfaces. The films of the stationary liquid are immobilized against solvent rinsing using CH2Cl2, pentane, and acetone, and maintain homogenity even at high temperature. Various doses of γ-radiation from a60Co. source were used for the crosslinking instead of the thermal peroxid treatment recently described by other authors. The effect of the γ-radiation crosslinking-procedure was investigated in comparison to the peroxid method in regard of: decrease of stationary phase content by solvent rinsing, separation efficiency, tailing behaviour, and bleeding of the columns obtained. Similar results as with the cumylperoxid-treatment were achieved using the γ-radiation-method. By γ-radiation no polar functional groups or moleculs are introduced into the stationary phase, however, as with the peroxid method. Less than 20% of the various stationary liquids are usually removed from the columns by solvent rising after crosslinking using both methods depending on the doses of radiation and the cumylperoxid concentration applied respectively.

Key Words

Alkylpolysiloxanes Capillary columns Fused silica Soft glass Crosslinking by γ-radiation and peroxid treatment 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    R. Dandeneau, E. Zerenner, HRC & CC2., 351 (1979).Google Scholar
  2. [2]
    C. Madani, E. M. Chambaz, M. Rigaud, J. Durand, P. Chebroux, J. Chromatogr.126, 161 (1976).Google Scholar
  3. [3]
    L. Blomberg, J. Buitjen, J. Gawdzik, T. Wännman, Chromatographia11, 521 (1978).Google Scholar
  4. [4]
    K. Grob, G. Grob, J Chromatogr.125, 471 (1976).Google Scholar
  5. [5]
    P. Larson, T. Stark, R. Dandenau, Proceedings of the 4th International Symp. Hindelang 1981 Hüthig Verlag, Heidelberg, p. 727.Google Scholar
  6. [6]
    G. Schomburg, H. Husmann, H. Borwitzky, Chromatographia12, 651 (1979).Google Scholar
  7. [7]
    W. Noll, Chemie und Technologie der Silicone, Verlag Chemie Weinheim, p. 197 (1968).Google Scholar
  8. [8]
    K. Grob, G. Grob, J. chromatogr.211, 243 (1981).Google Scholar
  9. [9]
    P. Sandra, G. Redant, E. Schacht, M. Verzele, HRC & CC,8, 411 (1981).Google Scholar
  10. [10]
    K. Grob, G. Grob, Chromatogr.213, 211 (1981).Google Scholar
  11. [11]
    K. Grob, G. Grob, HRC & CC10, 491 (1981).Google Scholar
  12. [12]
    K. Grob, G. Grob, HRC & CC1, 13 (1982).Google Scholar
  13. [13]
    M. Lee et al., Results presented at the Pittsburgh Conference 1982, Atlantic City to be published.Google Scholar
  14. [14]
    G. Schomburg, E. Bastia, H. Behlau, H. Husmann, F. Weeke, Proceedings of the 4th International Sympo. Hindelang 1981, Hüthig Verlag, Heidelberg, p. 371.Google Scholar
  15. [15]
    K. Grob, jr., J. Chromatogr.213, 3 (1981).Google Scholar
  16. [16]
    T. Stark et al., submitted for publication in J. Chromatogr.Google Scholar

Copyright information

© Friedr. Vieweg & Sohn Verlagsgesellschaft mbH 1982

Authors and Affiliations

  • G. Schomburg
    • 1
  • H. Husmann
    • 1
  • S. Ruthe
    • 1
  • M. Herraiz
    • 1
  1. 1.Max-Planck-Institut für KohlenforschungMülheim-RuhrF.R.G.

Personalised recommendations