Advertisement

On investigations in the comparative prime number theory

  • I. Kátai
Article

Keywords

Number Theory Prime Number Prime Number Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    E. Landau Über einen Satz von Tschebyshef,Math. Ann,51,1 (1905), pp. 527–550.MathSciNetGoogle Scholar
  2. [1]
    G. H. Hardy andJ. E. Littlewood Contributions to the theory of Riemann zeta-function and the theory of the distribution of primes,Acta Math.,41 (1918), pp. 119–196.Google Scholar
  3. [1]
    M. Riesz On the Riemann hypothesis,Acta Math.,40 (1916), pp. 185–190.Google Scholar
  4. [1]
    K. Prachar Primzahlverteilung (Berlin, Springer Verlag, 1957).Google Scholar
  5. [1]
    E. C. Titchmarsh The theory of the Riemann zeta function (Oxford, Univ. Press, 1951).Google Scholar
  6. [1]
    S. Knapowski andP. Turán Comparative prime-number theory. I–II–III,Acta Math. Acad. Sci. Hung.,13 (1962), pp. 299–314, 315–342, 343–364.CrossRefGoogle Scholar
  7. [2]
    Comparative prime number theory.IV–V–VI,,14 (1963), pp. 31–42, 43–63, 64–78.CrossRefGoogle Scholar
  8. [3]
    Comparative prime number theory. VII–VIII,,14 (1963), pp. 241–250, 251–268.CrossRefGoogle Scholar
  9. [1]
    S. Knapowski On oscillations of certain means formed from the Möbius series I,Acta Arithm.,8 (1963), pp. 311–320.Google Scholar
  10. [1]
    W. Staś Zur Theorie der Möbiusschen μ-Funktion,Acta Arithm.,7 (1962), pp. 409–416.Google Scholar
  11. [2]
    Über eine Reihe von Ramanujan,Acta Arithm.,8 (1963), pp. 216–231.Google Scholar
  12. [3]
    Some remarks on a series of Ramanujan,Acta Arithm.,10 (1963), 359–368.Google Scholar
  13. [1]
    I. Kátai Vizsgálatok az összehasonlító prímszámelmélet köréből (dissertation of candidate) Budapest, 1965.Google Scholar
  14. [2]
    A Möbius-féle μ-függvényről,MTA III. Oszt. Közl.,15 (1965), pp. 9–13.Google Scholar
  15. [3]
    A Möbius-függvény számtani közepének Ω-becslése,. (1965),15, pp. 15–18.Google Scholar
  16. [4]
    О сравнительной теории простых чисел,Acta Math. Acad. Sci. Hung.,18 (1967), pp. 133–149.CrossRefGoogle Scholar
  17. [5]
    Ω-теоремы для распределения простых чисел,Annales Univ. Sci. Budapest, Sectio Math.,9 (1966), pp. 87–93.Google Scholar
  18. [6]
    Об оненке типа Щ для функции Рамануджана,,9 (1966), pp. 95–102.Google Scholar
  19. [1]
    K. A. Rodossky О правильности в распреэелении простых чисел,Uspechi Mat. Nauk,17 (1962), pp. 189–191.Google Scholar

Copyright information

© Akadémiai Kiadó 1967

Authors and Affiliations

  • I. Kátai
    • 1
  1. 1.Budapest

Personalised recommendations