On investigations in the comparative prime number theory

  • I. Kátai
Article

Keywords

Number Theory Prime Number Prime Number Theory 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    E. Landau Über einen Satz von Tschebyshef,Math. Ann,51,1 (1905), pp. 527–550.MathSciNetGoogle Scholar
  2. [1]
    G. H. Hardy andJ. E. Littlewood Contributions to the theory of Riemann zeta-function and the theory of the distribution of primes,Acta Math.,41 (1918), pp. 119–196.Google Scholar
  3. [1]
    M. Riesz On the Riemann hypothesis,Acta Math.,40 (1916), pp. 185–190.Google Scholar
  4. [1]
    K. Prachar Primzahlverteilung (Berlin, Springer Verlag, 1957).Google Scholar
  5. [1]
    E. C. Titchmarsh The theory of the Riemann zeta function (Oxford, Univ. Press, 1951).Google Scholar
  6. [1]
    S. Knapowski andP. Turán Comparative prime-number theory. I–II–III,Acta Math. Acad. Sci. Hung.,13 (1962), pp. 299–314, 315–342, 343–364.CrossRefGoogle Scholar
  7. [2]
    Comparative prime number theory.IV–V–VI,,14 (1963), pp. 31–42, 43–63, 64–78.CrossRefGoogle Scholar
  8. [3]
    Comparative prime number theory. VII–VIII,,14 (1963), pp. 241–250, 251–268.CrossRefGoogle Scholar
  9. [1]
    S. Knapowski On oscillations of certain means formed from the Möbius series I,Acta Arithm.,8 (1963), pp. 311–320.Google Scholar
  10. [1]
    W. Staś Zur Theorie der Möbiusschen μ-Funktion,Acta Arithm.,7 (1962), pp. 409–416.Google Scholar
  11. [2]
    Über eine Reihe von Ramanujan,Acta Arithm.,8 (1963), pp. 216–231.Google Scholar
  12. [3]
    Some remarks on a series of Ramanujan,Acta Arithm.,10 (1963), 359–368.Google Scholar
  13. [1]
    I. Kátai Vizsgálatok az összehasonlító prímszámelmélet köréből (dissertation of candidate) Budapest, 1965.Google Scholar
  14. [2]
    A Möbius-féle μ-függvényről,MTA III. Oszt. Közl.,15 (1965), pp. 9–13.Google Scholar
  15. [3]
    A Möbius-függvény számtani közepének Ω-becslése,. (1965),15, pp. 15–18.Google Scholar
  16. [4]
    О сравнительной теории простых чисел,Acta Math. Acad. Sci. Hung.,18 (1967), pp. 133–149.CrossRefGoogle Scholar
  17. [5]
    Ω-теоремы для распределения простых чисел,Annales Univ. Sci. Budapest, Sectio Math.,9 (1966), pp. 87–93.Google Scholar
  18. [6]
    Об оненке типа Щ для функции Рамануджана,,9 (1966), pp. 95–102.Google Scholar
  19. [1]
    K. A. Rodossky О правильности в распреэелении простых чисел,Uspechi Mat. Nauk,17 (1962), pp. 189–191.Google Scholar

Copyright information

© Akadémiai Kiadó 1967

Authors and Affiliations

  • I. Kátai
    • 1
  1. 1.Budapest

Personalised recommendations