On decomposition of graphs

  • P. Erdős
  • A. Hajnal


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    P. Erdős andA. Hajnal, On chromatic number of graphs and set-systems,Acta Math. Acad. Sci. Hung.,17 (1966), pp. 61–99.CrossRefGoogle Scholar
  2. [2]
    P. Erdős andR. Rado, A partition calculus in set theory,Bulletin of Am. Math. Soc.,62 (1956), pp. 427–489.Google Scholar
  3. [3]
    P. Erdős, A. Hajnal andR. Rado, Partition relations for cardinal numbers,Acta Math. Acad. Sci. Hung.,16 (1965), pp. 93–196.CrossRefGoogle Scholar
  4. [4]
    P. Erdős andR. Rado, A construction of graphs without triangles having pre-assigned order and chromatic number,The Journal of the London Math. Soc.,35 (1960), pp. 445–448.Google Scholar
  5. [5]
    P. Erdős, Graph theory and probability,Canad. J. Math.,11 (1959), pp. 34–38.Google Scholar
  6. [6]
    P. Erdős andA. Rogers, The construction of certain graphs,Canadian Math. Journal,14 (1962), pp. 702–707.Google Scholar
  7. [7]
    E. Specker, Teilmengen von Mengen mit Relationen,Commentarii Math. Helvetici,31 (1957), pp. 302–334.Google Scholar
  8. [8]
    Nash Williams, Decomposition of finite graphs into forests,Journal of the London Math. Soc.,39 (1964), p. 12.Google Scholar
  9. [9]
    C. Berge,Théorie des graphes et ses applications (Dunod, Paris, 1958).Google Scholar

Copyright information

© Akadémiai Kiadó 1967

Authors and Affiliations

  • P. Erdős
  • A. Hajnal
    • 1
  1. 1.Budapest

Personalised recommendations