International Ophthalmology

, Volume 13, Issue 4, pp 281–290 | Cite as

Ocular vasospasm: A risk factor in the pathogenesis of low-tension glaucoma

  • Paul Gasser
Review Article

Abstract

The typical morphological and consequent functional damage caused by disease entities covered by the term ‘glaucoma’ is the result of inadequate circulation to the optic nerve fibres, predominantly in the papillary region, as a result of elevated intraocular pressure.

The aim of this study is classification of different forms of glaucoma on the basis of blood flow parameters. Physiological and pathophysiological aspects of ocular blood flow and of microcirculation and hemorrheology will be considered and the significance of ocular vasospasm in low-tension glaucoma discussed.

The frequent occurrence of vasospasm in the nailfold capillaries and of visual field deterioration after a coldwater test demonstrates that vasospasm is an expression of different underlying phenomena.

Our results show that, in patients with ocular vasospasm, treatment with a calcium antagonist brings about a clear reversal of their visual field defects.

Key words

low-tension glaucoma microcirculation vasospasm hemorrheology nailfold capillaroscopy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alm A. The effect of sympathetic stimulation on blood flow through the uvea, retina, and optic nerve in monkeys. Exp Eye Res 1977; 25: 19–24.Google Scholar
  2. 2.
    Alm A, Bill A. Ocular and optic nerve blood flow at normal and increased intraocular pressures in monkeys (Macaca iris): A study with radioactively labelled microsperes including flow determinations in brain and some other tissues. Exp Eye Res 1973; 15: 15–29.Google Scholar
  3. 3.
    Alm A, Bill A: The oxygen supply to the retina. II. Effects of high intraocular pressure and of increased arterial carbon dioxide tension on uveal and retinal blood flow in cats. Acta Physiol Scand 1972; 84: 306–19.Google Scholar
  4. 4.
    Alm A, Bill A. Blood flow and oxygen extraction in the cat uvea at normal and high intraocular pressure. Acta Physiol Scand 1970; 80: 19–28.Google Scholar
  5. 5.
    Alm A, Bill A. The oxygen supply to the retina. I. Effects of changes in intraocular and arterial blood pressures and in arterial PO2 and PCO2 on the oxygen tension in the vitreous body of the cats. Acta Physiol Scand 1972; 84: 261–74.Google Scholar
  6. 6.
    Alm A, Bill A. The effect of stimulation of the sympathetic chain on retinal oxygen tension and weal, retinal, and cerebral blood flow in cats. Acta Physiol Scand 1962; 56: 70–81.Google Scholar
  7. 7.
    Anderson DR. The posterior segment of glaucomatous eyes. In: Lütjen-Drecoll E, ed. Basis aspects of glaucoma research. Stuttgart-New York: Schattauer, 1982: 167.Google Scholar
  8. 8.
    Baillart P. La préssion arterielle dans les branches de l'artère centrale de la rétine. Ann Oculist 1917; 154: 648.Google Scholar
  9. 9.
    Bartl G. Das Elektroretinogramm und das evozierte Sehrindenpotential bei normalen und an Glaukom erkrankten Augen. Graefe's Arch Clin Exp Ophthalmol 1978; 207: 243–69.Google Scholar
  10. 10.
    Benedikt O, Bartl G, Hiti H, Mandl H. Die Aenderung elektrophysiologischer Antwort am menschlichen Auge bei kurzzeitiger Erhöhung des Augeninnendruckes. Graefe's Arch Clin Exp Ophtalmol 1974; 192: 57–64.Google Scholar
  11. 11.
    Bill A. Auswirkungen einer akuten Blutung beim Kaninchen auf den Blutfluss im Auge und in einigen anderen Geweben. Die Rolle der sympathischen Nerven. Klin Mbl Augenheilk 1984; 184: 305–7.Google Scholar
  12. 12.
    Bill A. Automatic nervous control of weal blood flow. Acta Physiol Scand 1962; 56: 70–81.Google Scholar
  13. 13.
    Bill A. Physiological aspects of the circulation in the optic nerve. In: Heilmann K, Richardson KT, eds. Glaucoma. Conceptions of disease. Stuttgart: Georg Thieme, 1978: 97–103.Google Scholar
  14. 14.
    Bill A. The uveal venous pressure. Arch Ophthalmol 1963; 69: 780–2.Google Scholar
  15. 15.
    Bill A. Some aspects of the ocular circulation. Invest ophthalmol 1985; 26: 410–24.Google Scholar
  16. 16.
    Bill A. Circulation in the eye. In: Handbook of Physiology. The Cardiovascular System, Vol IV, Microcirculation, Part 2. The American Physiological Society, 1984; 1001–34.Google Scholar
  17. 17.
    Bill A, Nilsson SPE. Control of ocular blood flow. J Cardiovasc Pharmacol 1985; 7 (suppl 3): 96–102.Google Scholar
  18. 18.
    Bill A, Sperber G, Ujiie K. Physiology of the choroidal vascular bed. Int Ophtalmol 1983; 6: 101.Google Scholar
  19. 19.
    Bill A, Linder J. The protective role of ocular sympathetic vasomotor nerves in acute arterial hypertension. Bibl Anat 1977; 16: 30–5.Google Scholar
  20. 20.
    Bill A, Sternschantz J. Cholinergic vasoconstrictor effects in the rabbit eye: Vasomotor effect of pentobarbital anesthesia. Acta Physiol Scand 1980; 108: 419–24.Google Scholar
  21. 21.
    Bollinger A. Funktionelle Angiologie. Stuttgart: Georg Thieme, 1979: 123–6.Google Scholar
  22. 22.
    Bollinger A. Nicht degenerative Arteriopathien. Klinik und Therapie der vasospastischen Syndrome. In: von Kappert A, ed. Aktuelle Probleme der Angiologie. Bern: Hans Huber, Band 17, 1972: 154–69.Google Scholar
  23. 23.
    Coffman JD, Cohen RA. Vasospasm — ubiquitous? N Engl J Med 1984; 304: 780–2.Google Scholar
  24. 24.
    Deutmann AF. Acute multifocal ischaemic choroidopathy and the choriocapillaris. Int Ophthalmol 1983; 6: 155.Google Scholar
  25. 25.
    Drance SM. Low tension glaucoma. Arch Ophthalmol 1985; 103: 1131.Google Scholar
  26. 26.
    Drance SM, Douglas GR, Wijsman K, Schulzer M, Britton RJ. Response of blood flow to warm and cold in normal and low tension glaucoma patients. Am J Ophthalmol 1988; 105: 35–9.Google Scholar
  27. 27.
    Ehinger B. Adrenergic nerves to the eye and to related structures in man and the cynomolgus monkey. Invest Ophthalmol 1966; 5: 42–52.Google Scholar
  28. 28.
    Flammer J. Lasertherapie und Glaukom. Th Umschau 1987; 4: 283–7.Google Scholar
  29. 29.
    Flammer J, Guthauser U, Mahler F. Do ocular vasospasms help cause low tension glaucoma? Doc Ophthalmol Proc Ser 1987; 397–9.Google Scholar
  30. 30.
    Flammer J, Jenni A, Keller B, Bebie H. The Octopus Glaucoma Programm G1. Glaucoma 1987; 9: 67–92.Google Scholar
  31. 31.
    Flammer J, Guthauser U. Behandlung chorioidaler Vasospasmen mit Kalziumantagonisten. Klin Mbl Augenheilk 1987; 190: 299–300.Google Scholar
  32. 32.
    Folkow B, Neil E. In Circulation. Oxford University Press, New York, 1971: 290–92.Google Scholar
  33. 33.
    Furchgott RF. Role of endothelium in responses of vascular smooth muscle. Circ Res 1983; 53: 557–73.Google Scholar
  34. 34.
    Gafner F, Goldmann H. Experimentelle Untersuchungen über den Zusammenhang von Augendrucksteigerungen und Gesichtsfeldschädigung. Ophthalmologica 1955; 130: 357.Google Scholar
  35. 35.
    Gallasch G. Analyse des Fliessverhaltens von Blut bei retinalen Durchblutungsstörungen und seine Bedeutung für die Therapie. Habilitationsschrift Ruprecht-Karls-Universität Heidelberg, 1985.Google Scholar
  36. 36.
    Gasser P, Flammer J, Guthauser U, Niesel P, Mahler F, Linder HR. Bedeutung des vasospastischen Syndroms in der Augenheilkunde. Klin Mbl Augenheilk 1986; 188: 398–9.Google Scholar
  37. 37.
    Gasser P, Flammer J. Influence of vasospasm on visual function. Doc ophthalmol 1987; 66: 3–18.Google Scholar
  38. 38.
    Gasser P, Flammer J. Le syndrome vasospastique à la lumière des perturbations circulatoires oculaires. Méd et Hyg 1987; 45: 1952–4.Google Scholar
  39. 39.
    Gasser P, Flammer J, Mahler F. Der Einsatz von Calciumantagonisten bei der Behandlung okulärer Durchblutungsstörungen im Rahmen des vasospastischen Syndroms. Schweiz Med Wschr 1988; 118: 201–2.Google Scholar
  40. 40.
    Gasser P, Flammer J. The use of calcium antagonists for ocular vasospasm. J Cardiovasc Pharmacol 1988; 12 (suppl 6): S180.Google Scholar
  41. 41.
    Geijer C, Bill A. Effects of raised intraocular pressure on retinal, prelaminar and retrolaminar optic nerve blood flow in monkeys. Invest Ophthalmol Vis Sci 1979; 18: 1030–42.Google Scholar
  42. 42.
    Guthauser U, Flammer J, Mahler F. The relationship between digital and ocular vasospasm. Graefe's Arch Clin Exp Ophthalmol 1988; 226: 224–6.Google Scholar
  43. 43.
    Hayreh SS. Pathogenesis of visual field defects; role of the ciliary circulation. Brit J Ophthalmol 1970; 54: 289–311.Google Scholar
  44. 44.
    Hayreh SS. Blood supply of the optic nerve head and its role in optic atrophy, glaucoma, and edema of the optic disc. Brit J Ophthalmol 1970; 53: 721–48.Google Scholar
  45. 45.
    Hayreh SS. Acute occlusive disorders of the choroidal vasculature. Int Ophthalmol 1983; 6: 139.Google Scholar
  46. 46.
    Hayreh SS. Pathogenesis of optic nerve damage and visual field defects. In: Heilman K, Richardson KT, eds. Glaucoma. Conceptions of disease. Stuttgart: Georg Thieme, 1978: 104–37.Google Scholar
  47. 47.
    Isbister JP. Contracted plasma volume syndromes. Int J Microcirc Clin Exp 1984; 3: 93–108.Google Scholar
  48. 48.
    Laties AM, Jacobowitz D. A Comparative study of autonomic innervation of the eye in monkey, cat, and rabbit. Anat Rec 1966; 156: 383–96.Google Scholar
  49. 49.
    Leydhecker W. Eine neue Definition der okulären Hypertension. In: Leydhecker W, Kriegelstein G, eds. Okuläre Hypertension, Heidelberg: Kaden, 1984: 1–5.Google Scholar
  50. 50.
    Löhlein H. Die therapeutische Beeinflussung von episkleralem Venendruck und Abflussdruck des Kammerwassers im gesunden und glaukomatösen Auge. Ber Dtsch Ophthal Ges 1950; 56: 146–9.Google Scholar
  51. 51.
    Luethi R, Münch U, Kistler HJ. Vasospastisches Syndrom bei junger Frau mit Migräne, Raynaud-Syndrom, Hirninfarkt und Herzinfarkt. Schweiz Med Wschr 1984; 114: 1465–9.Google Scholar
  52. 52.
    Miller D, Waters DD, Warnica W, Szlachcic J, Kraeft J, Theroux P. Is variant angina the coronary manifestation of generalized vasospastic disorder? N Engl J Med 1981; 304: 763–6.Google Scholar
  53. 53.
    Niesel P. Messungen von experimentell erzeugten Aenderungen der Aderhautdurchblutung bei Kaninchen. Basel-New York: S. Karger, 1962.Google Scholar
  54. 54.
    Nilsson SFE, Bill A. Vasoactive intestinal polypeptide (VIP): Effects in the eye and on regional blood flow. Acta Physiol Scand 1984; 121: 385–92.Google Scholar
  55. 55.
    Nilsson SFE, Linder J, Bill A. Characteristics of uveal vasodilatation produced by facial nerve stimulation in monkeys, cats and rabbits. Exp Eye Res 1985; 40: 841–52.Google Scholar
  56. 56.
    Parver LM, Auker CR, Carpenter DO, Doyle T. Choroidal blood flow. II. Reflexive control in the monkey. Arch Ophthalmol 1982; 100: 1327–30.Google Scholar
  57. 57.
    Parver LM, Auker CR, Carpenter DO. Choroidal blood flow. III. Reflexive control in human eyes. Arch Ophthalmol 1983; 101: 1604–6.Google Scholar
  58. 58.
    Phelps CD, Corbett JJ. Migraine and low tension glaucoma. A case control study. Invest Ophthalmol Vis Sci 1985; 26: 1105.Google Scholar
  59. 59.
    Proufit W. Types of spasm and their diagnosis. Am J Cardiol 1978; 44: 841–2.Google Scholar
  60. 60.
    Richardson KT. Glaucoma and glaucoma suspects. In: Heilmann K, Richardson KT, eds. Glaucoma - conceptions of a disease. Stuttgart: Georg Thieme, 1978: 2.Google Scholar
  61. 61.
    Schmid-Schönbein H. Fluid-dynamic and haemorheology in vivo: the interactions of haemodynamic parameters and haemorheological ‘properties’ in determining the flow behaviour of blood in microvascular networks. In: Lowe GDO, ed. Clinical blood rheology: rheology of the normal and abnormal circulation. Florida: CRP Press, Boca Raton, 1986.Google Scholar
  62. 62.
    Schmid-Schönbein H. Was ist eine Mikrozirkulationsstörung bei chronisch degenerativer Gefässerkrankung? Drug Res (II) 1981; 11a: 1999–2007.Google Scholar
  63. 63.
    Shepherd JT, Vanhoutte PM. The human cardiovascular system; Facts and concepts. New York: Raven Press, 1979.Google Scholar
  64. 64.
    Sperber GO, Bill A. Blood flow and glucose consumption in the optic nerve, retina and brain; effects of high intraocular pressure. Exp Eye Res 1985; 41: 639–53.Google Scholar
  65. 65.
    Stjernschantz J, Geijer C, Bill A. Electrical stimulation of the fifth cranial nerve in rabbits: Effects on ocular blood flow, extravascular albumin content and intraocular pressure. Exp Eye Res 1979; 28: 229–38.Google Scholar
  66. 66.
    Stjernschantz J, Alm A, Bill A. Cholinergic and aminergic control of uveal blood flow in rabbits. Bibl Anat 1977; 16: 42–6.Google Scholar
  67. 67.
    Stuart J, Bill B, Juhan-Vague I: Microrheological techniques for the measurement of erythrocyte deformability. In: Chayen I, Bitensky L, eds. Investigative microtechniques in medicine and biology. New York: Dekker, 1984: 297–326.Google Scholar
  68. 68.
    Toernquist P, Alm A. Retinal and chorioidal contribution to retinal metabolism in vivo. A study in pigs. Acta Physiol Scand 1979; 106: 315–57.Google Scholar
  69. 69.
    Ulrich WD, Ulrich C. Oculo-Oscillo-Dynamography: A diagnostic procedure for recording ocular pulses and measuring retinal and ciliary arterial blood pressures. Ophthalmic Res 1985; 17: 308.Google Scholar
  70. 70.
    Volger E, Schmid-Schönbein H. Vergleichende Untersuchungen über die Verformbarkeit und Aggregationstendenz der Erythrozyten bei Diabetes mellitus unter Berücksichtigung der Krankheitsdauer, der Stoffwechselführung und des Auftretens von komplizierten Erkrankungen. In: Alexander K, Cachovan M, eds. Diabetische Angiopathien. Witzstrock, Baden-Baden, New York, 1977: 29–37.Google Scholar
  71. 71.
    Zahavi I, Chagnac A, Hering R, Davidovich S, Kuritzky A. Prevalence of Raynaud's phenomenon in patients with migraine. Arch Intern Med 1984; 144: 742–4.Google Scholar

Copyright information

© Kluwer Academic Publishers 1989

Authors and Affiliations

  • Paul Gasser
    • 1
  1. 1.Department of Internal Medicine, St. ClaraspitalBasleSwitzerland

Personalised recommendations