Advertisement

Computing

, Volume 50, Issue 1, pp 69–76 | Cite as

AC2 finite element and interpolation

Short Communications

Abstract

In this paper, we define so-called QT triangulation of a given partition with quadrilateral, establish aC2 finite element and interpolation of the space of piecewise bivariate polynomial of total degree 6, and in the process obtain a local bases for the space.

AMS (MOS) Subject Classification

41A15 

Key words

Bivariate splines QT-triangulation interpolation 

EinC2-finites Element und Interpolation

Zusammenfassung

In diesem Artikel wird eine sogenannte QT-Triangulierung einer gegebenen Vierecksunterteilung eingeführt. Ein Finite-Elemente-Unterraum des RaumesC2 wird konstruiert. Dieser Unterraum besteht aus den Funktionen, die stückweise Polynome von zwei Veränderlichen des Gesamtgrades 6 sind und gewissen Interpolationsbedingungen Genügen.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Alfeld, P., Schumaker, L. L.: The dimension of bivariate spline spaces of smoothnessr for degreed≥4r+1. Constructive Approximation,3, 189–197 (1987).Google Scholar
  2. [2]
    Alfeld, P., Piper, B., Schumaker, L. L.: Minimally supported bases for spaces of bivariate piecewise polynomials of smoothnessr and degreed≥4r+1. Computer Aided Geometric Design4, 105–112 (1987).Google Scholar
  3. [3]
    Alfeld, P., Piper, B., Schumaker, L. L.: On the dimension of bivariate spline spaces of smoothnessr and degreed=3r+1. Numer. Math.57, 651–661 (1990).Google Scholar
  4. [4]
    de Boor, C.: B—form basics. In: Farin, G. (ed.) Geometric modeling. Philadelphia: SIAM P.A. 1987.Google Scholar
  5. [5]
    Farin, G.: Triangular Bernstein-Bézier patches. CAGD3, 83–127 (1986).Google Scholar
  6. [6]
    Gao, J. B.: A new finite element ofC 1 cubic splines. J. Comput. Appl. Math.40, 305–312 (1992).Google Scholar
  7. [7]
    Lawson, C.: Software forC 1 surface interpolation. In: Rice, J. R. (ed.) Mathematical software III. New York: Academic Press, pp. 161–194 (1977).Google Scholar
  8. [8]
    Powell, M. J. D., Sabin, M. A.: Piecewise quadratic approximation on triangles. ACM. Trans. Math. Software3, 316–325 (1977).Google Scholar
  9. [9]
    Renka, R. J.: Algorithm 624, triangulations and interpolations at arbitrarily distributed points in the plane. ACM Trans. Math. Software10, 440–446 (1984).Google Scholar
  10. [10]
    Schumaker, L. L.: On the dimension of spaces of piecewise polynomials in two variables. In: Schempp, W., Zeller, K. (eds.) Multivariate approximation theory. Birkhauser, pp. 396–412 (1979).Google Scholar
  11. [11]
    Schumaker, L. L.: Dual bases for spline spaces on cells. CAGD5, 277–284 (1988).Google Scholar

Copyright information

© Springer-Verlag 1993

Authors and Affiliations

  • J. Gao
    • 1
  1. 1.Department of MathematicsWuhan UniversityWuhanPeople's Republic of China

Personalised recommendations