Georgian Mathematical Journal

, Volume 3, Issue 3, pp 275–292 | Cite as

Almost periodic Harmonizable processes

  • Randall J. Swift
Article

Abstract

The class of harmonizable processes is a natural extension of the class of stationary processes. This paper provides sufficient conditions for the sample paths of harmonizable processes to be almost periodic uniformly, Stepanov and Besicovitch.

1991 Mathematics Subject Classification

60H10 

Key words and phrases

Harmonizable processes uniform Stepanov Besicovitch almost periodic processes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. Slutsky, Sur les functions aléatiores presque periodques et sur la decomposition des functions aléatiores stationaries en compusantes. In:Actualités Scientifques et Industrielles,738, 33–55,Hermann,Paris, 1938.Google Scholar
  2. 2.
    M. Udagawa, Asymptotic properties of distributions of some functionals of random variables.Rep. Statist. Appl. Res. Un. Japan Sci. Engrs. 2(1952), No. 2 and 3, 1–66.Google Scholar
  3. 3.
    T. Kawata, Almost periodic weakly stationary processes. In: Statistics and Probability: Essays in Honor of C. R. Rao. Kallianpur, Krishnaiah and Ghosh, eds., 383–396,North Holland, Amsterdam, New York, 1982.Google Scholar
  4. 4.
    M. Loéve, Probability Theory I and II. Fourth Edition.Springer, New York, 1977.Google Scholar
  5. 5.
    Yu. Rozanov, Spectral analysis of abstract functions.Theor. Prob. Appl. 4(1959), 271–287.Google Scholar
  6. 6.
    M. M. Rao, Harmonizable processes: structure theory.Enseign Math. 28(1981), 295–351.Google Scholar
  7. 7.
    M. M. Rao, Harmonizable, Cramér and Karhunen classes of processes. In: Handbook of statistics, vol. 5, 279–310,North-Holland, Amsterdam, 1985.Google Scholar
  8. 8.
    M. M. Rao, Sampling and prediction for harmonizable isotropic random fields.J. of Combin. Inform. and System Sci. 16(1991) No. 2-3, 207–220.Google Scholar
  9. 9.
    D. K. Chang and M. M. Rao, Bimeasures and nonstationary processes. In: Real and stochastic analysis, 7–118,John Wiley and Sons, New York, 1986.Google Scholar
  10. 10.
    D. K. Chang and M. M. Rao, Special representations of weakly harmonizable processes.Stochastic Anal. and Appl. 6(1980), No. 2, 169–190.Google Scholar
  11. 11.
    M. H. Mehlman, Prediction and fundamental moving averages for discrete multidimensional harmonizable processes.J. Multivarite Anal. 43(1992), No. 1, 147–170.Google Scholar
  12. 12.
    R. Swift, The structure of harmonizable isotropic random fields.Stochastic Anal. Appl. 12(1994), No. 5, 583–616.Google Scholar
  13. 13.
    R. Swift, A class of harmonizable isotropic random fields.J. Combin. Infor. System Sci. (to appear).Google Scholar
  14. 14.
    R. Swift, Representation and prediction for locally harmonizable isotropic random fields.J. Appl. Math. Stochastic Anal. 8(1995), No. 2, 101–114.Google Scholar
  15. 15.
    R. Swift, Stochastic processes with harmonizable increments.J. Combin. Inform. System Sci. (to appear).Google Scholar
  16. 16.
    A. S. Besicovitch, Almost periodic functions.Dover Publications, Inc., New York, 1954.Google Scholar
  17. 17.
    T. R. Hillman, Besicovitch-Orlicz spaces of almost periodic functions. In: Real and stochastic analysis, 119–167,John Wiley and Sons, New York 1986.Google Scholar
  18. 18.
    H. L. Hurd, Correlation theory of almost periodically correlated processes.J. Multivariate Anal. 37(1991), No. 1, 24–45.Google Scholar

Copyright information

© Plenum Publishing Corporation 1996

Authors and Affiliations

  • Randall J. Swift
    • 1
  1. 1.Department of MathematicsWestern Kentucky UniversityBowling GreenU.S.A.

Personalised recommendations