Advertisement

Chromatographia

, Volume 8, Issue 1, pp 13–17 | Cite as

A simple molecular model of adsorption chromatography

VIII. Solvent composition effects in thin-layer chromatography of aromatic nitro compounds in (cyclohexane + polar solvent) — Silica type systems
  • E. Soczewiński
  • W. Golkiewicz
  • W. Markowski
Originals

Summary

The relationship between the RM values of a number of aromatic nitro compounds and the composition of the solvent (moving phase) is interpreted in terms of an adsorption model. In accordance with this model, linear RM vs. log XS plots were obtained (XS is the mole fraction of the polar solvent) in wide composition ranges, the slopes of the plots being related to the molecular mechanism of adsorption and thus to the molecular structure of the chromatographed solute. The slopes indicate one-point attachment of the samples with one polar group and predominant two-point attachment of the samples with two or more polar groups (−NO2, −NH2, −OH). As in the case of the systems investigated in the previous papers of this series, the RM vs. log XS plots tend to spread fanwise with dilution of the polar solvent (improved selectivity).

Keywords

Chromatography Analytical Chemistry Organic Chemistry Molecular Mechanism Molecular Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    L. S. Bark, R. J. T. Graham, Talanta11, 839 (1964).CrossRefGoogle Scholar
  2. [2]
    L. S. Bark, R. J. T. Graham, in “Intern Symposium Chromatographie Electrophorèse”, Presses Académiques Européennes, Bruxelles 1968; pp. 119–127.Google Scholar
  3. [3]
    D. R. Clifford, D. M. Fieldgate, D. A. Watkins, J. Chromatog.43, 110 (1968).CrossRefGoogle Scholar
  4. [4]
    L. Fishbein, J. Chromatog.27, 368 (1967).CrossRefGoogle Scholar
  5. [5]
    K. Berei, L. Vásáros, J. Chromatog.26, 301 (1967).CrossRefGoogle Scholar
  6. [6]
    J. Ościk, J. K. Rózylo, Chromatographia4, 516 (1971).Google Scholar
  7. [7]
    E. Soczewiński, Anal. Chem.41, 179 (1969).CrossRefGoogle Scholar
  8. [8]
    E. Soczewiński, W. Golkiewiez, Chromatographia4, 501 (1971).Google Scholar
  9. [9]
    E. Soczewiński, W. Golkiewicz, Chromatographia5, 431 (1972).Google Scholar
  10. [10]
    W. Golkiewicz, E. Soczewiński, Chromatographia5, 594 (1972).CrossRefGoogle Scholar
  11. [11]
    E. Soczewiński, W. Golkiewicz, Chromatographia6, 269 (1973).Google Scholar
  12. [12]
    G. C. Pimentel, A. L. McClellan, The Hydrogen Bond, Freeman, San Francisco, 1960.Google Scholar
  13. [13]
    L. R. Snyder, Principles of Adsorption Chromatography, Marcel Dekker, New York, 1968.Google Scholar
  14. [14]
    M. Vecera, J. Gasparic, Detection and Identification of Organic compounds, Plenum Press, New York, 1971; p. 357.Google Scholar
  15. [15]
    A. V. Kiselev, B. V. Lygin, Infrared Spectra of Surface Compounds, (in Russian), Nauka, Moscow, 1972; pp. 272–273.Google Scholar
  16. [16]
    E. Soczewiński, W. Golkiewicz, H. Szumilo, J. Chromatog.45, 1 (1969).CrossRefGoogle Scholar
  17. [17]
    W. J. Dawidow, A. V. Kiselev, D. T. Zhuravlev, Trans. Faraday Soc.60, 2254 (1964).CrossRefGoogle Scholar
  18. [18]
    H. Staab, Einführung in die theoretische organische Chemie, chapter 3.3, Verlag Chemie, Weinheim, 1962.Google Scholar
  19. [19]
    K. J. Bombaugh in “Modern Practice of Liquid Chromatography”, Ed.J. J. Kirkland, Wiley-Interscience, New York, 1971; pp. 237–285.Google Scholar

Copyright information

© Friedr. Vieweg & Sohn, Verlagsgesellschaft mbH 1975

Authors and Affiliations

  • E. Soczewiński
    • 1
  • W. Golkiewicz
    • 1
  • W. Markowski
    • 1
  1. 1.Department of Inorganic and Analytical ChemistryInstitute of Basic Chemical Sciences of the Medical AcademyLublinPoland

Personalised recommendations