Skip to main content

Advertisement

Log in

Chemical aspects of the matrix concept in calcified tissue organisation

  • Review
  • Published:
Calcified Tissue Research Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Araya, S., S. Saito, S. Nakanishi, andY. Kawanishi: Soluble collagen in bone. Nature (Lond.)192, 758–759 (1961).

    Google Scholar 

  • Bear, R. S. The structure of collagen fibrils. Advanc. Protein Chem.7, 69–160 (1952).

    Google Scholar 

  • Blumenfeld, O. O., andP. M. Gallop: The participation of aspartyl residues in the hydroxylamine-or hydrazine-sensitive bonds of collagen. Biochemistry1, 947–959 (1962).

    Article  PubMed  Google Scholar 

  • Bonar, L. C., M. J. Glimcher, andG. L. Mechanic: The molecular structure of the neutralsoluble proteins of embryonic bovine enamel in the solid state. J. Ultrastruc. Res.13, 308–317 (1965b).

    Article  Google Scholar 

  • —,G. L. Mechanic andM. J. Glimcher: Optical rotatory dispersion studies of the neutral soluble proteins of embryonic bovine enamel. J. Ultrastruc. Res.13, 296–307 (1965a).

    Article  Google Scholar 

  • Brown, W. E.: A mechanism for the growth of apatitic crystals. In: Tooth enamel. Its composition, properties and fundamental structure (M. V. Stack andR. W. Fearnhead, eds.), p. 11. Bristol: John Wright 1965.

    Google Scholar 

  • Brudevold, F., andR. Söremark: Chemistry of the mineral phase of enamel. In: Structural and chemical organization of teeth, (A. E. W. Miles, ed.), vol. II, p. 247, New York: Academic Press 1967.

    Google Scholar 

  • Burgess, R. C., andC. M. Maclaren: Proteins in developing bovine enamel. In: Tooth enamel. Its composition, properties and fundamental structure (M. V. Stack andR. W. Fearnhead, eds.), p. 74. Bristol: John Wright 1965.

    Google Scholar 

  • Cox, R. W., R. A. Grant, andR. W. Horne: The structure and assembly of collagen fibrils. I. Native-collagen fibrils and their formation from tropocollagen. J. roy. micr. Soc.87, 123–142 (1967).

    PubMed  Google Scholar 

  • Deakins, M.: Changes in the ash, water and organic content of pig enamel during calcification. J. dent. Res.21, 429–435 (1942).

    Google Scholar 

  • Eastoe, J. E.: Organic matrix of tooth enamel. Nature (Lond.)187, 411–412 (1960).

    Google Scholar 

  • —: The amino-acid composition of proteins from the oral tissues-I. A comparison of human oral epithelium, epidermis and nail proteins. Arch. oral Biol.8, 449–458 (1963a).

    Article  Google Scholar 

  • —: The amino-acid composition of proteins from the oral tissues—II. The matrix proteins in dentine and enamel from developing human deciduous teeth. Arch. oral. Biol.8, 633–652 (1963b).

    Article  Google Scholar 

  • —: Recent studies on the organic matrices of bone and teeth. In: First European Symposium on Bones and Teeth (H. J. J. Blackwood, ed.), p. 269. Oxford: Pergamon Press 1964.

    Google Scholar 

  • Eastoe, J. E.: The chemical composition of bone and tooth. Advanc. Fluorine, Res. and dent. Caries Prevn.3, 5–16 (1965).

    Google Scholar 

  • — Chemical organization of the organic matrix of dentine. In: Structural and chemical organization of teeth (A. E. W. Miles, ed.), vol. II, p. 279. New York: Academic Press 1967.

    Google Scholar 

  • —, andA. A. Leach: A survey of recent work on the amino acid composition of vertebrate collagen and gelatin. In: Recent advances in gelatin and glue research (G. Stainsby, ed.), p. 173. London: Pergamon Press 1958.

    Google Scholar 

  • Ennever, J., andH. Creamer: Microbiologic calcification: Bone mineral and bacteria. Calc. Tiss. Res.1, 87–93 (1967).

    Article  Google Scholar 

  • Fearnhead, R. W.: The insoluble organic component of human enamel. In: Tooth enamel. Its composition, properties and fundamental structure, (M. V. Stack andR. W. Fearnhead, eds.), p. 127. Bristol: John Wright 1965.

    Google Scholar 

  • Fincham, A. G. The natural mineralisation of keratins. Ph. D. thesis Leeds Univ. 1966.

  • Fitton Jackson, S.: Certain principles of fibrogenesis. In: The mechanisms of tooth support—A symposium, p. 1. Bristol: John Wright 1967.

    Google Scholar 

  • Fleisch, H., andS. Bisaz: Mechanism of calcification: Inhibitory role of pyrophosphate. Nature (Lond.)195, 911 (1962).

    Google Scholar 

  • Frank, R. M., andJ. Nalbandian: Ultrastructure of amelogenesis. In: Structural and chemical organization of teeth, (A. E. W. Miles, ed.), vol. I, p. 399. New York: Academic Press 1967.

    Google Scholar 

  • Glimcher, M. J.:Molecular biology of mineralized tissues with particular reference to bone. Rev. mod. Phys.31, 359–393 (1959).

    Article  Google Scholar 

  • —,U. A. Friberg, andP. T. Levine: The isolation and amino acid composition of the enamel proteins of erupted bovine teeth. Biochem. J.93, 202–210 (1964b).

    PubMed  Google Scholar 

  • —, andE. P. Katz: The organization of collagen in bone: the role of noncovalent bonds in the relative insolubility of bone collagen. J. Ultrastruc. Res.12, 705–729 (1965).

    Article  Google Scholar 

  • —— andD. F. Travis: The solubilization and reconstitution of bone collagen. J. Ultrastruct. Res.13, 163–171 (1965).

    Article  PubMed  Google Scholar 

  • — andS. M. Krane: The identification of serine phosphate in enamel proteins. Biochim. biophys. Acta (Amst.)90, 477–483 (1964).

    Google Scholar 

  • —, andE. J. Daniel: The amino acid composition of the organic matrix of decalcified fetal bovine dental enamel. J. biol. Chem.236, 3210–3213 (1961).

    PubMed  Google Scholar 

  • —— andU. A. Friberg: The amino acid composition of the organic matrix and the neutralsoluble and acid-soluble components of embryonic bovine enamel. Biochem. J.93, 198–202 (1964a).

    PubMed  Google Scholar 

  • Greulich, R. C., andH. C. Slavkin Amino acid utilization in the synthesis of enamel and dentin matrices as visualized by autoradiography. In: The use of radioautography in investigating protein synthesis. New York: Academic Press 1965.

    Google Scholar 

  • Harding, J. J.: The unusual links and cross-links of collagen. Advanc. Protein Chem.20, 109–190 (1965).

    Google Scholar 

  • Harkness, R. D.: Biological functions of collagen. Biol. Rev.36, 399–463 (1961).

    PubMed  Google Scholar 

  • Herring, G. M.: Comparison of bovine bone sialoprotein and serum orosomucoid. Nature (Lond.)201, 709 (1964a).

    Google Scholar 

  • —: Chemistry of the bone matrix. Clin. Orthop.36, 169–183 (1964b).

    Google Scholar 

  • Hodge, A. J., andF. O. Schmitt: The charge profile of the tropocollagen macromolecule and the packing arrangement in native-type collagen fibrils. Proc. nat. Acad. Sci. (Wash.)46, 186–197 (1960).

    Google Scholar 

  • Hutton, J. J., A. L. Tappel, andS. Udenfriend: Cofactor and substrate requirements of collagen proline hydroxylase. Arch. Biochem.118, 231–240 (1967).

    Article  Google Scholar 

  • Irving, J. T.: A histological stain for newly calcified tissues. Nature (Lond.)181, 704–705 (1958).

    Google Scholar 

  • —: The sudanophil material at sites of calcification. Arch. oral Biol.8, 735–745 (1963).

    Article  Google Scholar 

  • Kang, A. H., P. Bornstein, andK. A. Piez: The amino acid sequence of peptides from the cross-linking region of rat skin collagen. Biochemistry6, 788–795 (1967).

    Article  PubMed  Google Scholar 

  • Kelly, P. G., P. T. P. Oliver, andF. G. E. Pautard: The shell ofLingula unguis. Second European Symposium on Bones and Teeth, (L. J. Richelle andM. J. Dallemagne, eds.), p. 337, L'Université de Liège 1965.

  • Kivirikko, K. I., andD. J. Prockop: Partial characterization of protocollagen from embryonic cartilage. Biochem. J.102, 432–442 (1967).

    PubMed  Google Scholar 

  • Krane, S. M., M. J. Stone, andM. J. Glimcher: The presence of protein phosphokinase in connective tissues and the phosphorylation of enamel proteinsin vitro. Biochim. biophys. Acta (Amst.)97, 77–87 (1965).

    Google Scholar 

  • Lindenbaum, A., andK. E. Kuettner: Mucopolysaccharides and mucoproteins of calf scapula. Calc. Tiss. Res.1, 153–165 (1967).

    Google Scholar 

  • Mandel, I. D.: Electrophoretic studies of saliva. J. dent. Res.45, 634–643 (1966).

    Google Scholar 

  • Pautard, F. G. E.: The molecular-biologic background to the evolution of bone. Clin. Orthop.24, 230–244 (1962).

    Google Scholar 

  • — Mineralization of keratin and its comparison with the enamel matrix. Nature (Lond.)199, 531–535 (1963).

    Google Scholar 

  • Piez, K. A.: Chemistry of the protein matrix of enamel. In: Fundamentals of keratinization (E. O. Butcher andR. F. Sognnaes, eds.), chapt. II. Washington: American Association for the Advancement of Science 1962.

    Google Scholar 

  • —, andJ. Gross: The amino acid composition of some fish collagens: The relation between composition and structure. J. biol. Chem.235, 995–998 (1960).

    PubMed  Google Scholar 

  • —, andR. C. Likins: The conversion of lysine to hydroxylysine and its relation to the biosynthesis of collagen in several tissues of the rat. J. biol. Chem.229, 101–109 (1957).

    PubMed  Google Scholar 

  • —,G. R. Martin, A. H. Kang, andP. Bornstein: Heterogeneity of the α chains of rat skin collagen and its relation to the biosynthesis of cross-links. Biochemistry5, 3813–3820 (1966).

    Article  Google Scholar 

  • Ramachandran, G. N.: Treatise on collagen — 1. Chemistry. London: Academic Press 1967.

    Google Scholar 

  • Robison, R.: The possible significance of hexosephosphoric esters in ossification. Biochem. J.17, 286–293 (1923).

    Google Scholar 

  • Schlueter, R. J., andA. Veis: The macromolecular organization of dentine matrix collagen. II. Periodate degradation and carbohydrate cross-linking. Biochemistry3, 1657–1665 (1964).

    Article  PubMed  Google Scholar 

  • Schmitt, F. O.: Macromolecular interaction patterns in biological systems. Proc. Amer. phil. Soc.100, 476–486 (1956).

    Google Scholar 

  • Schubert, M.: Structure of connective tissues, a chemical point of view. Fed. Proc.25, 1047–1052 (1966).

    PubMed  Google Scholar 

  • Shapiro, I. M.: The phospholipids of calcified tissues. J. Bone Jt Surg. B49, 381 (1967).

    Google Scholar 

  • —,R. E. Wuthier, andJ. T. Irving: A study of the phospholipids of bovine dental tissues — I. Enamel matrix and dentine. Arch. oral Biol.11, 501–512 (1966).

    Article  PubMed  Google Scholar 

  • Sobel, A. E.: The local factor in calcification. Trans. Macy Conf. metab. Interrelations2, 113–143 (1950).

    Google Scholar 

  • — Local factors in the mechanism of calcification. Ann. N.Y. Acad. Sci.60, 713–732 (1955).

    PubMed  Google Scholar 

  • Solomons, C. C., andW. F. Neuman: On the mechanisms of calcification: the remineralization of dentin. J. biol. Chem.235, 2502–2506 (1960).

    PubMed  Google Scholar 

  • Stack, M. V.: The chemical nature of the organic matrix of bone, dentin and enamel. Ann. N.Y. Acad. Sci.60, 585–595 (1955).

    PubMed  Google Scholar 

  • —. Changes in the organic matrix of enamel during growth. J. Bone Jt Surg. B42, 853 (1960).

    Google Scholar 

  • —: Chemical organization of the organic matrix of enamel. In: Structural and chemical organization of Teeth (A. E. W. Miles, ed.) vol. II, p. 317. New York: Academic Press 1967.

    Google Scholar 

  • Stainsby, G., andD. A. Ledward: Gelation in modified gelatins. Research Panel Paper No 66, Birmingham: Gelatine and Glue Research Association 1967.

    Google Scholar 

  • Stetten, M. R., andR. Schoenheimer: The metabolism of 1 (-)-proline studied with the aid of deuterium and isotopic nitrogen. J. biol. Chem.153, 113–132 (1944).

    Google Scholar 

  • Travis, D. F., C. J. François, L. C. Bonar, andM. J. Glimcher: Comparative studies of the organic matrices of invertebrate mineralized tissues. J. Ultrastruc. Res.18, 519–550 (1967).

    Article  Google Scholar 

  • Veis, A., J. Anesey, andS. Mussell: A limiting microfibril model for the three-dimensional arrangement within collagen fibres. Nature (Lond.)215, 931–934 (1967).

    Google Scholar 

  • —, andR. J. Schlueter: The macromolecular organization of dentine matrix collagen. I. Characterization of dentine collagen. Biochemistry3, 1650–1657 (1964).

    Article  Google Scholar 

  • Weidmann, S. M.: Review of modern concepts on calcification. Arch. oral Biol.1 259–264 (1959).

    Article  Google Scholar 

  • —: Mechanism of calcification. Biological aspects. Proc. 9th ORCA Congr. dent. Caries Paris 1962. p. 79. Oxford: Pergamon Press 1963.

    Google Scholar 

  • Windrum, G. M., P. W. Kent, andJ. E. Eastoe: The constitution of human renal reticulin. Brit. J. exp. Path.36, 49–59 (1955).

    PubMed  Google Scholar 

  • Wuthier, R. E., andJ. T. Irving: Lipids in developing calf bone. J. dent. Res.43, 814–815 (1964).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eastoe, J.E. Chemical aspects of the matrix concept in calcified tissue organisation. Calc. Tis Res. 2, 1–19 (1968). https://doi.org/10.1007/BF02279189

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02279189

Key words

Navigation