Skip to main content
Log in

A comparison of local approximation methods for the analysis of meteorological data

Ein Vergleich lokaler Näherungsverfahren zur Analyse meteorologischer Daten

  • Published:
Archives for meteorology, geophysics, and bioclimatology, Series B Aims and scope Submit manuscript

Summary

A number of local interpolation methods suitable for statistical and graphical meteorological applications, including weighted averages, least-squares polynomials and successive corrections, were compared in this study. Daily observations of temperature and geopotential height recorded in two years by 71 European stations were used as data sources; the results of the interpolations were checked against the observed values in 19 selected stations, the data of which were assumed as missing. The methods were tested in points with different conditions of data density and isotropy.

The best results were obtained with algorithms based on simple weighted averages, in one or more steps; in these methods a proper choice of the influence radii appears to be the key factor in determining the accuracy of the approximation. In particular, a successive correction (SC) method using a weighted average with a large radius as a first guess and two correction steps proved to give the highest accuracy with a reasonable computational time. The SC method was also used to generate grid-point fields of geopotential height in a six-month winter period, and the main statistical properties of this sample were compared with those of the corresponding fields analysed by the European Centre for Medium Range Weather Forecasts. The mean field, the standard deviations, and the principal components that explain the most part of the total variance were correctly reproduced in the sample generated by the SC method.

Zusammenfassung

In dieser Untersuchung werden einige lokale Interpolationsmethoden, wie gewichtete Mittel, Polynome aufgrund der kleinsten Quadrate oder eine schrittweise Korrektur, die für statistische und graphische meteorologische Anwendungen geeignet sind, miteinander verglichen. Die täglichen Beobachtungen der Temperatur und der geopotentiellen Höhe von 2 Jahren und 71 europäischen Stationen wurden als Datenmaterial herangezogen. Die Ergebnisse der Interpolationen wurden mit den Messungen von 19 ausgesuchten Stationen verglichen, deren Daten als fehlend angenommen wurden waren. Die Methoden wurden in Punkten mit verschiedener Datendichte und Datenisotropie getestet.

Die besten Ergebnisse lieferten die gewichteten Mittel - bei dieser Methode erwies sich die Wahl geeigneter Einflußradien als entscheidend für die Genauigkeit. Besonders die Methode der stufenweisen Korrektur mit einem gewichteten Mittel bei einem großen Radius als ersten und zwei Korrekturschritten erwies sich bei angemessener Rechenzen als die genaueste. Diese Methode wurde auch herangezogen, um an Gitterpunkten die geopotentiellen Höhen für eine sechsmonatige Winterperiode zu berechnen. Die statistischen Eigenschaften dieser Felder wurden mit deren des ECMWF (Europäisches Zentrum für Mittelfristvorhersagen) verglichen. Dabei wurde das mittlere Feld, die Standardabweichung und mit Einschränkungen die totale Varianz durch die oben erwähnte Methode korrekt reproduziert.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bergman, K. H.: Multivariate Analysis of Temperatures and Winds Using Optimum Interpolation. Mon. Weath. Rev.107, 1423–1444 (1979).

    Article  Google Scholar 

  2. Bergthorsson, P., Döös, B. R.: Numerical Weather Map Analysis. Tellus7, 329–340 (1955).

    Google Scholar 

  3. Boone, D. R., Samuelson, G. S.: Computer Mapping of Air Quality. J. Environ. Eng. Div. Proc. ASCE103, EE6, 969–979 (1977).

    Google Scholar 

  4. Buell, C. E.: Correlation Functions for Wind and Geopotential on Isobaric Surfaces. J. Appl. Met.11, 51–59 (1972).

    Article  Google Scholar 

  5. Buell, C. E.: The Topography of Empirical Orthogonal Functions. Preprints Fourth Conf. Probability and Statistics in Atmospheric Sciences, Tallahassee. Amer. Met. Soc., 188–193 (1975).

  6. Buell, C. E.: On the Physical Interpretation of Empirical Orthogonal Functions. Preprints Sixth Conf. Probability and Statistics in Atmospheric Sciences, Banff, Amer. Met. Soc., 112–117 (1979).

  7. Corby, G. A.: An Experiment in Three-Dimensional Objective Analysis. Tellus15, 432–438 (1963).

    Google Scholar 

  8. Cressman, G. P.: An Operational Objective Analysis System. Mon. Weath. Rev.87, 367–374 (1959).

    Google Scholar 

  9. Eliassen, A.: Provisional Report on Calculation of Spatial Covariance and Autocorrelation of the Pressure Field. Inst. Weather and Climate Res., Acad. Sci. Oslo, Rept. No. 5 (1954).

  10. Endlich, R. M., Mancuso, L.: Objective Analysis of Environmental Conditions Associated with Severe Thunderstorms and Tornadoes. Mon. Weath. Rev.96, 342–350 (1968).

    Google Scholar 

  11. Gandin, L. S.: Objective Analysis of Meteorological Fields. Leningrad: Hydromet. Press 1963. (Translated from Russian by the Israelic Program for Scientific Translations, 242 pp., 1965.)

    Google Scholar 

  12. Gilchrist, B., Cressman, G. P.: An Experiment in Objective Analysis. Tellus6, 97–101 (1954).

    Google Scholar 

  13. Glahn, H. R.: Comments on: “A Comparison of Interpolation Methods for Sparse Data: Application to Wind and Concentration Fields.” J. Appl. Met.20, 88–91 (1981).

    Article  Google Scholar 

  14. Goodin, W. R., McRae, G. J., Seinfeld, J. H.: A Comparison of Interpolation Methods for Sparse Data: Application to Wind and Concentration Fields. J. Appl. Met.18, 761–771 (1979).

    Article  Google Scholar 

  15. Goodin, W. R., McRae, G. J., Seinfeld, J. H.: Reply. J. Appl. Met.20, 92–94 (1981).

    Article  Google Scholar 

  16. Gustavsson, N.: A Review of Methods for Objective Analysis. Proceedings of ECMWF Seminar 1980 on Data Assimilation Methods, 15–19 September 1980, ECMWF, Reading, U.K., pp. 19–82 (1981).

    Google Scholar 

  17. Julian, P. R., Thiebaux, H. J.: On Some Properties of Correlation Functions Used in Optimum Interpolation Schemes. Mon. Weath. Rev.103, 605–613 (1975).

    Article  Google Scholar 

  18. Karl, T. R., Koscielny, A. J., Diaz, H. F.: Potential Errors in Application of Principal Component (Eigenvector) Analysis to Geophysical Data. J. Appl. Met.21, 1183–1186 (1982).

    Article  Google Scholar 

  19. Lorene, A.: A Global Three-Dimensional Multivariate Statistical Interpolation Scheme. Mon. Weath. Rev.109, 701–721 (1981).

    Article  Google Scholar 

  20. Maude, A. D.: Interpolation — Mainly for Graph Plotters. The Computer16, 64–65 (1973).

    Article  Google Scholar 

  21. McLain, D. H.: Drawing Contours from Arbitrary Data Points. Comput. J.17, 318–324 (1974).

    Google Scholar 

  22. McLain, D. H.: Two-Dimensional Interpolation From Random Data. Comput. J.19, 178–181 (1976).

    Google Scholar 

  23. Panofsky, H. A.: Objective Weather-Map Analysis. J. Met.6, 386–392 (1949).

    Google Scholar 

  24. Schlatter, T. W.: Some Experiments with a Multivariate Statistical Objective Analysis Scheme. Mon. Weath. Rev.103, 246–257 (1975).

    Article  Google Scholar 

  25. Schlatter, T. W., Branstator, G. W., Thiel, L. G.: Testing a Global Multivariate Statistical Objective Analysis Scheme with Observed Data. Mon. Weath. Rev.104, 765–783 (1976).

    Article  Google Scholar 

  26. Stephens, J. J., Stitt, J. M.: Optimum Influence Radii for Interpolation with the Method of Successive Corrections. Mon. Weath. Rev.98, 680–687 (1970).

    Google Scholar 

  27. Thiebaux, H. J.: Experiments with Correlation Representation for Objective Analysis. Mon. Weath. Rev.103, 617–627 (1975).

    Article  Google Scholar 

  28. Thiebaux, H. J.: Anisotropic Correlation Functions for Objective Analysis. Mon. Weath. Rev.104, 994–1002 (1976).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

With 6 Figures

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tronci, N., Molteni, F. & Bozzini, M. A comparison of local approximation methods for the analysis of meteorological data. Arch. Met. Geoph. Biocl., Ser. B 36, 189–211 (1986). https://doi.org/10.1007/BF02278328

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02278328

Keywords

Navigation