Skip to main content
Log in

Long-term stabilization of earth's surface air temperature by a negative feedback mechanism

Langzeitige Stabilisierung der Lufttemperatur in Bodennähe durch einen negativen Rückkoppelungsprozeß

Archives for meteorology, geophysics, and bioclimatology, Series B Aims and scope Submit manuscript

Cite this article

Summary

A potential negative feedback relationship between atmospheric relative humidity and surface air temperature is described. Together with a recently proposed negative feedback mechanism involving atmospheric CO2, the phenomenon may be sufficient to prevent the global ice catastrophies which are a common prediction of many climate models following initial development of ice age conditions, and could well be of importance for the problem of the cool sun in Earth's early history.

Zusammenfassung

Die Möglichkeit eines negativen Rückkoppelungsprozesses zwischen der relativen Feuchte der Luft und der Temperatur in Bodennähe wird beschrieben. Zusammen mit einem unlängst vorgeschlagenen positiven Rückkoppelungsprozeß, der atmosphärisches CO2 miteinbezieht, kann dieses Phänomen dazu ausreichen, die globalen Eiskatastrophen zu verhindern, welche von vielen Klimamodellen nach ursprünglicher Entwicklung eiszeitlicher Zustände vorausgesagt werden. Dieser feuchtebezogene Rückkoppelungsprozeß könnte auch für das Problem der kühlen Sonne in der Frühgeschichte der Erde von Bedeutung sein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Asse, J. K., Idso, S. B.: A Comparison of Two Formula Types for Calculating LongWave Radiation from the Atmosphere. Water Resources Res.14, 623–625 (1978).

    Article  Google Scholar 

  2. Arnfield, A. J.: Evaluation of Empirical Expressions for the Estimation of Hourly and Daily Totals of Atmospheric Longwave Emission Under all Sky Conditions. Quart. J. R. Met. Soc.105, 1041–1052 (1979).

    Article  Google Scholar 

  3. Bahcall, J. N., Shaviv, G.: Solar Models and Neutrino Fluxes. Astrophys. J.153, 113–126 (1968).

    Article  Google Scholar 

  4. Broecker, W. S.: A Kinetic Model for the Chemical Composition of Sea Water. Quat. Res.1, 188–207 (1971).

    Article  Google Scholar 

  5. Budyko, M. I.: Climatic Change. Sov. Geogr.10, 429–457 (1969).

    Google Scholar 

  6. Budyko, M. I.: Climatic Changes. Washington, D. C.: Amer. Geophys. Union 1977.

    Google Scholar 

  7. Burroughs, W. J., Jones, R. G., Gebbie, H. A.: A Study of Submillimeter Atmospheric Absorption Using the HCN Maser. J. Quant. Spectrosc. Radiat. Transfer9, 809–824 (1969).

    Article  Google Scholar 

  8. Ezer, D., Cameron, A. G. W.: A Study of Solar Evolution. Can. J. Phys.43, 1497–1517 (1965).

    Google Scholar 

  9. Garrels, R. M., Mackenzie, F. T.: Evolution of Sedimentary Rocks. New York: W. Norton 1971.

    Google Scholar 

  10. Gebbie, H. A., Burroughs, W. J.: Observations of Atmospheric Absorption in the Wavelength Range 2 mm to 300 μm. Nature217, 1241–1242 (1968).

    Article  Google Scholar 

  11. Gebbie, H. A., Chamberlain, J., Burroughs, W. J.: Sub-Millimetre Wave Solar Observations. Nature220, 893–895 (1968).

    Article  Google Scholar 

  12. Gebbie, H. A., Burroughs, W. J., Chamberlain, J., Harries, J. E., Jones, R. G.: Dimers of the Water Molecule in the Earth's Atmosphere. Nature221, 143–145 (1969).

    Article  Google Scholar 

  13. Ghil, M.: Climatic Stability for a Sellers-Type Model. J. Atmos. Sci.33, 3–20 (1976).

    Article  Google Scholar 

  14. Hansen, J., Johnson, D., Lacis, A., Lebedeff, S., Lee, P., Rind, D., Russell, G.: Climate Impact of Increasing Atmospheric Carbon Dioxide. Science213, 957–966 (1981).

    Article  Google Scholar 

  15. Hatfield, J. L., Reginato, R. J., Idso, S. B.: Comparison of Long-Wave Radiation Calculation Methods over the United States. Water Resources Res. submitted (1982).

  16. Holland, H. D.: The Chemistry of the Atmosphere and Oceans. New York: Interscience 1978.

    Google Scholar 

  17. Iben, I.: The Ci37 Solar Neutrino Experiment and the Solar Helium Abundance. Ann. Phys. (New York)54, 164–203 (1969).

    Article  Google Scholar 

  18. Idso, S. B.: The Climatological Significance of a Doubling of Earth's Atmospheric Carbon Dioxide Concentration. Science207, 1462–1463 (1980).

    Article  Google Scholar 

  19. Idso, S. B.: Carbon Dioxide and Climate. Science210, 7–8 (1980).

    Article  Google Scholar 

  20. Idso, S. B.: On the Apparent Incompatibility of Different Atmospheric Thermal Radiation Data Sets. Quart. J. R. Met. Soc.106, 375–376 (1980).

    Article  Google Scholar 

  21. Idso, S. B.: Carbon Dioxide — An Alternative View. New Sci.92, 444–446 (1981).

    Google Scholar 

  22. Idso, S. B.: A Set of Equations for Full Spectrum and 8–14μm and 10.5–12.5μm Thermal Radiation from Cloudless Skies. Water Resources Res.17, 295–304 (1981).

    Article  Google Scholar 

  23. Idso, S. B.: On the Systematic Nature of Diurnal Patterns of Differences Between Calculations and Measurements of Clear Sky Atmospheric Thermal Radiation. Quart. J. R. Met. Soc.107, 737–741 (1981).

    Article  Google Scholar 

  24. Idso, S. B.: A Surface Air Temperature Response Function for Earth's Atmosphere. Boundary-Layer Met.22, 227–232 (1982).

    Article  Google Scholar 

  25. Idso, S. B.: An Empirical Evaluation of Earth's Surface Air Temperature Response to an Increase in Atmospheric Carbon Dioxide Concentration. In: AIP Conf. Proc. No. 82: Interpretation of Climate and Photochemical Models, Ozone and Temperature Measurements (Reek, R. A., Hummel, J., eds.). New York: Amer. Institute Phys., 119–134 (1982

    Google Scholar 

  26. Kandel, R. S.: Surface Temperature Sensitivity to Increased Atmospheric CO2. Nature293, 634–636 (1981).

    Article  Google Scholar 

  27. Knauth, L. P., Epstein, S.: Hydrogen and Oxygen Isotope Ratios in Modular and Bedded Cherts. Geochim. Cosmochim. Acta40, 1095–1108 (1976).

    Article  Google Scholar 

  28. Kuhn, W. R., Atreya, S. K.: Ammonia Photolysis and the Greenhouse Effect in the Primordial Atmosphere of the Earth. Icarus37, 207–213 (1979).

    Article  Google Scholar 

  29. Lacis, A., Hansen, J., Lee, P., Mitchell, T., Lebedeff, S.: Greenhouse Effects of Trace Gases. Geophys. Res. Lett.8, 1035–1038 (1981).

    Article  Google Scholar 

  30. Manabe, S., Wetherald, R. T.: The Effects of Doubling the CO2 Concentration on the Climate of a General Circulation Model. J. Atmos. Sci.32, 3–15 (1975).

    Article  Google Scholar 

  31. Newell, R. E., Dopplick, T. G.: Questions Concerning the Possible Influence of Anthropogenic CO2 on Atmospheric Temperature. J. Appl. Met.18, 822–825 (1979).

    Article  Google Scholar 

  32. Newell, R. E., Dopplick, T. G.: Reply to Robert C. Watts' “Discussion of ‘Questions Concerning the Possible Influence of Anthropogenic CO2 on Atmospheric Temperature’”. J. Appl. Met.20, 114–117 (1981).

    Article  Google Scholar 

  33. Newman, M. J., Rood, R. T.: Implication of Solar Evolution for the Earth's Early History. Science198, 1035–1037 (1977).

    Article  Google Scholar 

  34. North, G. R.: Theory of Energy-Balance Climate Models. J. Atmos. Sci.32, 2033–2043 (1975).

    Article  Google Scholar 

  35. Owen, T., Cess, R. D., Ramanthan, V.: Enhanced CO2 Greenhouse to Compensate for Reduced Solar Luminosity on Early Earth. Nature277, 640–642 (1979).

    Article  Google Scholar 

  36. Pauling, L.: The Nature of the Chemical Bond. Ithaca, N.Y.: Cornell University Press 1960.

    Google Scholar 

  37. Pollack, J. B.: Climatic Change on the Terrestrial Planets. Icarus37, 479–553 (1979).

    Article  Google Scholar 

  38. Ramanathan, V.: Greenhouse Effect Due to Chlorofluorocarbons: Climate Implications. Science190, 50–53 (1975).

    Google Scholar 

  39. Ramanathan, V.: The Role of Ocean-Atmosphere Interactions in the CO2-Climate Problem. J. Atmos. Sci.38, 918–930 (1981).

    Article  Google Scholar 

  40. Ramsey, J. G.: Trans. Geol. Soc. S. Afr.66, 353 (1963).

    Google Scholar 

  41. Rasool, S. I., deBergh, C.: The Runaway Greenhouse and Accumulation of CO2 in the Venus Atmosphere. Nature226, 1037–1039 (1970).

    Article  Google Scholar 

  42. Sagan, C.: The Radiation Balance of Venus. Tech. Rept., No. 32-34, Jet Propulsion Lab. (1960).

  43. Sagan, S., Mullen, G.: Earth and Mars: Evolution of Atmospheres and Surface Temperatures. Science177, 52–56 (1972).

    Article  Google Scholar 

  44. Schneider, S. H., Washington, W. M., Chervin, R. M.: Cloudiness as a Climatic Feedback Mechanism: Effects on Cloud Amounts of Prescribed Global and Regional Surface Temperature Changes in the NCAR GCM. J. Atmos. Sci.35, 2207–2221 (1978).

    Article  Google Scholar 

  45. Schopf, J. W., Barghoum, E. S.: Alga-Like Fossils from the Early Precambrian of South Africa. Science156, 507–512 (1967).

    Article  Google Scholar 

  46. Schwarzschild, M., Howard, R., Harm, R.: Inhomogeneous Stellar Models. V. A Solar Model with Convective Envelope and Inhomogenous Interior. Astrophys. J.125, 233–241 (1957).

    Article  Google Scholar 

  47. Sellers, W. D.: A Climate Model Based on the Energy Balance of the Earth-Atmosphere System. J. Appl. Met.8, 392–400 (1969).

    Article  Google Scholar 

  48. Sellers, W. D.: A New Global Climatic Model. J. Atmos. Sci.12, 241–254 (1973).

    Google Scholar 

  49. Siever, R.: Sedimentological Consequence of Steady-State Ocean-Atmosphere. Sedimentology11, 5–29 (1968).

    Article  Google Scholar 

  50. Simpson, J. J., Paulson, C. A.: Mid-Ocean Observations of Atmospheric Radiation. Quart. J. R. Met. Soc.105, 487–502 (1979).

    Article  Google Scholar 

  51. Walker, J. C. G.: Evolution of the Atmosphere. New York: Macmillan 1977.

    Google Scholar 

  52. Walker, J. C. G., Hays, P. B., Kasting, J. F.: A Negative Feedback Mechanism for the Long-Term Stabilization of Earth's Surface Temperature. J. Geophys. Res.86, 9776–9782 (1981).

    Article  Google Scholar 

  53. Wang, W., Yung, Y., Lacis, A., Mo, T., Hansen, J.: Greenhouse Effects Due to Man-Made Perturbation of Trace Gases. Science194, 685–688 (1976).

    Article  Google Scholar 

  54. Warren, S. C., Schneider, S. H.: Seasonal Simulation as a Test for Uncertainties in the Parameteriagations of a Budyko-Sellers Zonal Climate Model. J. Atmos. Sci.36, 1377–1397 (1979).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Contribution from Agricultural Research Service, U.S. Department of Agriculture.

With 1 Figure

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Idso, S.B. Long-term stabilization of earth's surface air temperature by a negative feedback mechanism. Arch. Met. Geoph. Biocl., Ser. B 31, 211–219 (1982). https://doi.org/10.1007/BF02278294

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02278294

Keywords

Navigation