Long-term stabilization of earth's surface air temperature by a negative feedback mechanism

  • S. B. Idso


A potential negative feedback relationship between atmospheric relative humidity and surface air temperature is described. Together with a recently proposed negative feedback mechanism involving atmospheric CO2, the phenomenon may be sufficient to prevent the global ice catastrophies which are a common prediction of many climate models following initial development of ice age conditions, and could well be of importance for the problem of the cool sun in Earth's early history.


Greenhouse Effect Atmospheric Emissivity Negative Feedback Mechanism Atmospheric Carbon Dioxide Concentration Atmospheric Relative Humidity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Langzeitige Stabilisierung der Lufttemperatur in Bodennähe durch einen negativen Rückkoppelungsprozeß


Die Möglichkeit eines negativen Rückkoppelungsprozesses zwischen der relativen Feuchte der Luft und der Temperatur in Bodennähe wird beschrieben. Zusammen mit einem unlängst vorgeschlagenen positiven Rückkoppelungsprozeß, der atmosphärisches CO2 miteinbezieht, kann dieses Phänomen dazu ausreichen, die globalen Eiskatastrophen zu verhindern, welche von vielen Klimamodellen nach ursprünglicher Entwicklung eiszeitlicher Zustände vorausgesagt werden. Dieser feuchtebezogene Rückkoppelungsprozeß könnte auch für das Problem der kühlen Sonne in der Frühgeschichte der Erde von Bedeutung sein.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Asse, J. K., Idso, S. B.: A Comparison of Two Formula Types for Calculating LongWave Radiation from the Atmosphere. Water Resources Res.14, 623–625 (1978).CrossRefGoogle Scholar
  2. 2.
    Arnfield, A. J.: Evaluation of Empirical Expressions for the Estimation of Hourly and Daily Totals of Atmospheric Longwave Emission Under all Sky Conditions. Quart. J. R. Met. Soc.105, 1041–1052 (1979).CrossRefGoogle Scholar
  3. 3.
    Bahcall, J. N., Shaviv, G.: Solar Models and Neutrino Fluxes. Astrophys. J.153, 113–126 (1968).CrossRefGoogle Scholar
  4. 4.
    Broecker, W. S.: A Kinetic Model for the Chemical Composition of Sea Water. Quat. Res.1, 188–207 (1971).CrossRefGoogle Scholar
  5. 5.
    Budyko, M. I.: Climatic Change. Sov. Geogr.10, 429–457 (1969).Google Scholar
  6. 6.
    Budyko, M. I.: Climatic Changes. Washington, D. C.: Amer. Geophys. Union 1977.Google Scholar
  7. 7.
    Burroughs, W. J., Jones, R. G., Gebbie, H. A.: A Study of Submillimeter Atmospheric Absorption Using the HCN Maser. J. Quant. Spectrosc. Radiat. Transfer9, 809–824 (1969).CrossRefGoogle Scholar
  8. 8.
    Ezer, D., Cameron, A. G. W.: A Study of Solar Evolution. Can. J. Phys.43, 1497–1517 (1965).Google Scholar
  9. 9.
    Garrels, R. M., Mackenzie, F. T.: Evolution of Sedimentary Rocks. New York: W. Norton 1971.Google Scholar
  10. 10.
    Gebbie, H. A., Burroughs, W. J.: Observations of Atmospheric Absorption in the Wavelength Range 2 mm to 300 μm. Nature217, 1241–1242 (1968).CrossRefGoogle Scholar
  11. 11.
    Gebbie, H. A., Chamberlain, J., Burroughs, W. J.: Sub-Millimetre Wave Solar Observations. Nature220, 893–895 (1968).CrossRefGoogle Scholar
  12. 12.
    Gebbie, H. A., Burroughs, W. J., Chamberlain, J., Harries, J. E., Jones, R. G.: Dimers of the Water Molecule in the Earth's Atmosphere. Nature221, 143–145 (1969).CrossRefGoogle Scholar
  13. 13.
    Ghil, M.: Climatic Stability for a Sellers-Type Model. J. Atmos. Sci.33, 3–20 (1976).CrossRefGoogle Scholar
  14. 14.
    Hansen, J., Johnson, D., Lacis, A., Lebedeff, S., Lee, P., Rind, D., Russell, G.: Climate Impact of Increasing Atmospheric Carbon Dioxide. Science213, 957–966 (1981).CrossRefGoogle Scholar
  15. 15.
    Hatfield, J. L., Reginato, R. J., Idso, S. B.: Comparison of Long-Wave Radiation Calculation Methods over the United States. Water Resources Res. submitted (1982).Google Scholar
  16. 16.
    Holland, H. D.: The Chemistry of the Atmosphere and Oceans. New York: Interscience 1978.Google Scholar
  17. 17.
    Iben, I.: The Ci37 Solar Neutrino Experiment and the Solar Helium Abundance. Ann. Phys. (New York)54, 164–203 (1969).CrossRefGoogle Scholar
  18. 18.
    Idso, S. B.: The Climatological Significance of a Doubling of Earth's Atmospheric Carbon Dioxide Concentration. Science207, 1462–1463 (1980).CrossRefGoogle Scholar
  19. 19.
    Idso, S. B.: Carbon Dioxide and Climate. Science210, 7–8 (1980).CrossRefGoogle Scholar
  20. 20.
    Idso, S. B.: On the Apparent Incompatibility of Different Atmospheric Thermal Radiation Data Sets. Quart. J. R. Met. Soc.106, 375–376 (1980).CrossRefGoogle Scholar
  21. 21.
    Idso, S. B.: Carbon Dioxide — An Alternative View. New Sci.92, 444–446 (1981).Google Scholar
  22. 22.
    Idso, S. B.: A Set of Equations for Full Spectrum and 8–14μm and 10.5–12.5μm Thermal Radiation from Cloudless Skies. Water Resources Res.17, 295–304 (1981).CrossRefGoogle Scholar
  23. 23.
    Idso, S. B.: On the Systematic Nature of Diurnal Patterns of Differences Between Calculations and Measurements of Clear Sky Atmospheric Thermal Radiation. Quart. J. R. Met. Soc.107, 737–741 (1981).CrossRefGoogle Scholar
  24. 24.
    Idso, S. B.: A Surface Air Temperature Response Function for Earth's Atmosphere. Boundary-Layer Met.22, 227–232 (1982).CrossRefGoogle Scholar
  25. 25.
    Idso, S. B.: An Empirical Evaluation of Earth's Surface Air Temperature Response to an Increase in Atmospheric Carbon Dioxide Concentration. In: AIP Conf. Proc. No. 82: Interpretation of Climate and Photochemical Models, Ozone and Temperature Measurements (Reek, R. A., Hummel, J., eds.). New York: Amer. Institute Phys., 119–134 (1982Google Scholar
  26. 26.
    Kandel, R. S.: Surface Temperature Sensitivity to Increased Atmospheric CO2. Nature293, 634–636 (1981).CrossRefGoogle Scholar
  27. 27.
    Knauth, L. P., Epstein, S.: Hydrogen and Oxygen Isotope Ratios in Modular and Bedded Cherts. Geochim. Cosmochim. Acta40, 1095–1108 (1976).CrossRefGoogle Scholar
  28. 28.
    Kuhn, W. R., Atreya, S. K.: Ammonia Photolysis and the Greenhouse Effect in the Primordial Atmosphere of the Earth. Icarus37, 207–213 (1979).CrossRefGoogle Scholar
  29. 29.
    Lacis, A., Hansen, J., Lee, P., Mitchell, T., Lebedeff, S.: Greenhouse Effects of Trace Gases. Geophys. Res. Lett.8, 1035–1038 (1981).CrossRefGoogle Scholar
  30. 30.
    Manabe, S., Wetherald, R. T.: The Effects of Doubling the CO2 Concentration on the Climate of a General Circulation Model. J. Atmos. Sci.32, 3–15 (1975).CrossRefGoogle Scholar
  31. 31.
    Newell, R. E., Dopplick, T. G.: Questions Concerning the Possible Influence of Anthropogenic CO2 on Atmospheric Temperature. J. Appl. Met.18, 822–825 (1979).CrossRefGoogle Scholar
  32. 32.
    Newell, R. E., Dopplick, T. G.: Reply to Robert C. Watts' “Discussion of ‘Questions Concerning the Possible Influence of Anthropogenic CO2 on Atmospheric Temperature’”. J. Appl. Met.20, 114–117 (1981).CrossRefGoogle Scholar
  33. 33.
    Newman, M. J., Rood, R. T.: Implication of Solar Evolution for the Earth's Early History. Science198, 1035–1037 (1977).CrossRefGoogle Scholar
  34. 34.
    North, G. R.: Theory of Energy-Balance Climate Models. J. Atmos. Sci.32, 2033–2043 (1975).CrossRefGoogle Scholar
  35. 35.
    Owen, T., Cess, R. D., Ramanthan, V.: Enhanced CO2 Greenhouse to Compensate for Reduced Solar Luminosity on Early Earth. Nature277, 640–642 (1979).CrossRefGoogle Scholar
  36. 36.
    Pauling, L.: The Nature of the Chemical Bond. Ithaca, N.Y.: Cornell University Press 1960.Google Scholar
  37. 37.
    Pollack, J. B.: Climatic Change on the Terrestrial Planets. Icarus37, 479–553 (1979).CrossRefGoogle Scholar
  38. 38.
    Ramanathan, V.: Greenhouse Effect Due to Chlorofluorocarbons: Climate Implications. Science190, 50–53 (1975).Google Scholar
  39. 39.
    Ramanathan, V.: The Role of Ocean-Atmosphere Interactions in the CO2-Climate Problem. J. Atmos. Sci.38, 918–930 (1981).CrossRefGoogle Scholar
  40. 40.
    Ramsey, J. G.: Trans. Geol. Soc. S. Afr.66, 353 (1963).Google Scholar
  41. 41.
    Rasool, S. I., deBergh, C.: The Runaway Greenhouse and Accumulation of CO2 in the Venus Atmosphere. Nature226, 1037–1039 (1970).CrossRefGoogle Scholar
  42. 42.
    Sagan, C.: The Radiation Balance of Venus. Tech. Rept., No. 32-34, Jet Propulsion Lab. (1960).Google Scholar
  43. 43.
    Sagan, S., Mullen, G.: Earth and Mars: Evolution of Atmospheres and Surface Temperatures. Science177, 52–56 (1972).CrossRefGoogle Scholar
  44. 44.
    Schneider, S. H., Washington, W. M., Chervin, R. M.: Cloudiness as a Climatic Feedback Mechanism: Effects on Cloud Amounts of Prescribed Global and Regional Surface Temperature Changes in the NCAR GCM. J. Atmos. Sci.35, 2207–2221 (1978).CrossRefGoogle Scholar
  45. 45.
    Schopf, J. W., Barghoum, E. S.: Alga-Like Fossils from the Early Precambrian of South Africa. Science156, 507–512 (1967).CrossRefGoogle Scholar
  46. 46.
    Schwarzschild, M., Howard, R., Harm, R.: Inhomogeneous Stellar Models. V. A Solar Model with Convective Envelope and Inhomogenous Interior. Astrophys. J.125, 233–241 (1957).CrossRefGoogle Scholar
  47. 47.
    Sellers, W. D.: A Climate Model Based on the Energy Balance of the Earth-Atmosphere System. J. Appl. Met.8, 392–400 (1969).CrossRefGoogle Scholar
  48. 48.
    Sellers, W. D.: A New Global Climatic Model. J. Atmos. Sci.12, 241–254 (1973).Google Scholar
  49. 49.
    Siever, R.: Sedimentological Consequence of Steady-State Ocean-Atmosphere. Sedimentology11, 5–29 (1968).CrossRefGoogle Scholar
  50. 50.
    Simpson, J. J., Paulson, C. A.: Mid-Ocean Observations of Atmospheric Radiation. Quart. J. R. Met. Soc.105, 487–502 (1979).CrossRefGoogle Scholar
  51. 51.
    Walker, J. C. G.: Evolution of the Atmosphere. New York: Macmillan 1977.Google Scholar
  52. 52.
    Walker, J. C. G., Hays, P. B., Kasting, J. F.: A Negative Feedback Mechanism for the Long-Term Stabilization of Earth's Surface Temperature. J. Geophys. Res.86, 9776–9782 (1981).CrossRefGoogle Scholar
  53. 53.
    Wang, W., Yung, Y., Lacis, A., Mo, T., Hansen, J.: Greenhouse Effects Due to Man-Made Perturbation of Trace Gases. Science194, 685–688 (1976).CrossRefGoogle Scholar
  54. 54.
    Warren, S. C., Schneider, S. H.: Seasonal Simulation as a Test for Uncertainties in the Parameteriagations of a Budyko-Sellers Zonal Climate Model. J. Atmos. Sci.36, 1377–1397 (1979).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1982

Authors and Affiliations

  • S. B. Idso
    • 1
  1. 1.U.S. Water Conservation LaboratoryPhoenixUSA

Personalised recommendations