Skip to main content
Log in

Turbulent dispersion of gaseous pollutants: Numerical study of ground level concentration as a function of Eddy diffusivity parametrization on the atmospheric boundary layer

Turbulente Zerstreuung von gasförmigen Luftverunreinigungen: eine numerische Untersuchung der Konzentration in Bodennähe als Funktion einer Parametrisierung der turbulenten Diffusion in der atmosphärischen Grenzschicht

  • Published:
Archives for meteorology, geophysics, and bioclimatology, Series B Aims and scope Submit manuscript

Summary

A numerical model of the dispersion of gaseous atmospheric pollutants based on the K-theory has been proposed, and the numerical procedure has been validated by confronation with analytical solution.

The physical parametrization of the model in the surface layer is based on the similarity theory and requires a set of micrometeorological tower data, and an estimation of surface roughness length.

The extrapolation to the planetary boundary layer of wind velocity is carried out by a power law profile which fits the log-linear profile in the surface layer, while that of vertical eddy diffusivity is carried out in several different ways proposed in literature. Also the crosswind eddy diffusivity is parametrized in several different ways. The ground level concentration results to be strongly depending on the vertical and horizontal eddy diffusivity parametrization.

Then the usefulness of analytical models as to ground level concentration, if an opportune atmospheric parametrization is adopted, has been considered.

Zusammenfassung

Es wird ein auf die K-Theorie begründetes numerisches Modell für die Verbreitung von gasförmigen Luftverunreinigungen vorgeschlagen und das numerische Verfahren durch eine Gegenüberstellung zur analytischen Lösung bestätigt. Die physikalische Parametrisierung des Modells wird in der oberflächennahen Schicht auf die Ähnlichkeitstheorie begründet und erfordert eine Reihe von mikrometeorologischen Beobachtungsdaten und eine Schätzung der Oberflächenrauhigkeitslänge.

Die Extrapolation der Windgeschwindigkeit auf die planatare Grenzschicht wird mit einem Profil nach dem Potenzgesetz ausgeführt, das dem linearen logarithmischen Profil in der Oberflächenschicht angepaßt ist, während sie für die vertikale turbulente Diffusion nach verschiedenen in der Literatur angegebenen Arten durchgeführt wird. Auch die turbulente Diffusion quer zum Wind wird auf verschiedene Arten parametrisiert. Die Konzentration in der Grundschicht ist stark von der Parametrisierung der vertikalen und horizontalen turbulenten Diffusion abhängig.

Die Brauchbarkeit analytischer Modelle für die Konzentration in der Grundschicht wird bei angenommener passender atmosphärischer Parametrisierung einer Betrachtung unterzogen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Corrsin, S.: Limitations of Gradient Transport Models in Random Walks and in Turbulence. Advances in Geophysics, Vol. 18A, pp. 25–60. London: Academic Press 1974.

    Google Scholar 

  2. Demuth, C.: A Contribution to the Analytical Steady Solution of the Diffusion Equation for Line Source. Atmos. Environ.12, 1255–1258 (1978).

    Article  Google Scholar 

  3. Dyer, A. J.: A Review of Flux-Profile Relationships. Boundary-Layer Met.7, 363–371 (1974).

    Article  Google Scholar 

  4. Gifford, F. A.: Turbulent Diffusion Typing Schemes, a Review. Nuc. Saf.17, 68–86 (1976).

    Google Scholar 

  5. Golder, D.: Relation Among Stability Parameters in the Surface Layer. Boundary-Layer Met.3, 47–58 (1972).

    Article  Google Scholar 

  6. Huang, C. H., Nickerson, E. C.: Numerical Simulation of Wind, Temperature, Shear Stress and Turbulent Energy Over Non Homogeneous Terrain. Colorado State Univ., Fort Collins, CO (CERT 71-72 CH ECN 23), 1972.

    Google Scholar 

  7. Huang, C. H.: A Theory of Dispersion in Turbulent Shear Flow. Atmos. Environ.13, 453–463 (1979).

    Article  Google Scholar 

  8. Lamb, R. G.; Chen, W. H., Seinfeld, J. H.: Numerico-Empirical Analyses of Atmospheric Diffusion Theories. J. Atmos. Sci.32, 1794–1807 (1975).

    Article  Google Scholar 

  9. Lupini, R., Tirabassi, T.: Gaussian Plume Model and Advection Equation: an Attempt to Connect the Two Approaches. Atmos. Environ.13, 1169–1174 (1979).

    Article  Google Scholar 

  10. McVehil, C. A.: Wind and Temperature Profiles Near the Ground in Stable Stratification. Quart. J. R. Met. Soc.90, 136–146 (1964).

    Article  Google Scholar 

  11. Pasquill, F.: Atmospheric Diffusion, p. 429, edited by Ellis Horwood, London 1974.

    Google Scholar 

  12. Paulson, C. A.: The Mathematical Representation of Wind Speed and Temperature in the Unstable Atmospheric Surface Layer. J. Appl. Met.9, 857–861 (1970).

    Article  Google Scholar 

  13. Ragland, K. W., Dennis, R. L.: Point Source Atmospheric Diffusion Model With Variable Wind and Diffusivity Profiles. Atmos. Environ.9, 175–189 (1975).

    Article  Google Scholar 

  14. Richtmyer, R. D., Morton, K. W.: Difference Methods for Initial-value Problems, p. 405. New York: Interscience Publ. 1967.

    Google Scholar 

  15. Runca, E., Sardei, F.: Numerical Treatment of Time Dependent Advection and Diffusion of Air Pollutants. Atmos. Environ.9, 69–80 (1975).

    Article  Google Scholar 

  16. Runca, E.: Numerical Integration of Atmospheric Diffusion Equation. Int. School Atm. Physics, Erice, Feb. 1978.

    Google Scholar 

  17. Runca, E., Sardei, F.: An Improved Numerical Representation of a Point Source. Tech. Rep. LBM; Italy, Venice 1978.

  18. Sardei, F., Runca, E.: An Efficient Numerical Scheme for Solving Time Dependent Problems of Air Pollution Advection and Diffusion. Sem. air pollution modelling, I.B.M., Venice, March 1976.

    Google Scholar 

  19. Seinfeld, J. H.: Air Pollution, p. 523. New York: McGraw Hill Comp. 1975.

    Google Scholar 

  20. Shir, C. C., Shieh, L. J.: A Generalized Urban Air Pollution Model and Its Applications to the Study of SO2 Distribution in the St. Louis Metropolitan Area. J. Appl. Met.13, 185–204 (1974).

    Article  Google Scholar 

  21. Sutton, O. G.: Micrometeorology, p. 333. New York: McGraw Hill Comp. 1953.

    Google Scholar 

  22. Tangerman, G.: Numerical Simulations of Air Pollutant Dispersion in a Stratified Planetary Boundary Layer. Atmos. Environ.12, 1365–1369 (1978).

    Article  Google Scholar 

  23. Walters, T. S.: The Importance of Diffusion Along the Mean Wind Direction for a Ground Level Crosswind Line Source. Atmos. Environ.3, 461–466 (1969).

    Article  Google Scholar 

  24. Webb, E. K.: Profile Relationships: the Lg-linear Range and Extension to Strong Stability. Quart. J. R. Met. Soc.96, 67–90 (1970).

    Article  Google Scholar 

  25. Yanenko, N. N.: The Method of Fractional Steps, p. 160. Berlin-Heidelberg-New York: Springer 1971.

    Google Scholar 

  26. Yeh, G. T., Huang, C. H.: Three-dimensional Air Pollutant Modelling in the Lower Atmosphere. Boundary-Layer Met.9, 381–390 (1975).

    Article  Google Scholar 

  27. Yokohama, O., Gamo, M., Yamamoto, S.: On the Turbulence Quantities in the Neutral Atmospheric Boundary Layer. J. Met. Soc. Japan55, 312–318 (1977).

    Google Scholar 

  28. Yordanov, D.: Simple Approximation Formulae for Determining the Concentration Distribution of High Sources. Atmos. Environ.6, 389–398 (1972).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

With 15 Figures

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nanni, T., Tagliazucca, M. Turbulent dispersion of gaseous pollutants: Numerical study of ground level concentration as a function of Eddy diffusivity parametrization on the atmospheric boundary layer. Arch. Met. Geoph. Biocl., Ser. B 31, 159–190 (1982). https://doi.org/10.1007/BF02278292

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02278292

Keywords

Navigation