Continuous underwater light measurement near Helgoland (North Sea) and its significance for characteristic light limits in the sublittoral region

  • K. Lüning
  • M. J. Dring
Article

Abstract

Underwater irradiance was measured at intervals of 20 min for one year at 2 water depths (2.5 and 3.5 m below M.L.W.S.) and in 3 spectral regions in the sublittoral region of the rocky island of Helgoland. Data are presented for spectral and total irradiance at water depths ranging from 2 to 15 m (below M.L.W.S.). 90% of the total annual light reaching sublittoral habitats is received during the period from April to September, when Jerlov water type 7 (occasionally water type 5) dominates. During the other half of the year, the water is very turbid, and transparency is so low that long dark periods occur even at moderate water depths. The total annual light received at the lower kelp limit (Laminaria hyperborea), at 8 m water depth, is 15 MJ m−2 year−1 or 70 E m−2 year−1, which corresponds to 0.7% of surface irradiance (visible). At the lower algal limit (15 m water depth) these values are 1 MJ m−2 year−1 or 6 E m−2 year−1, corresponding to 0.05% of surface irradiance. These data are similar to measurements at the same limits in several different geographical areas, and may determine the depth at which these limits occur.

Literature Cited

  1. Anderson, M. C., 1971. Radiation and crop structure. In: Plant photosynthetic production. Ed. by Z. Sestak, J. Catsky & P. G. Jarvis. Junk, The Hague, 412–466.Google Scholar
  2. Boutler, J., Cabioch, L. & Grall, J.-R., 1974. Quelques observations sur la pénétration de la lumière dans les eaux marines au voisinage de Roscoff et ses conséquences écologiques. Bull. Soc. phycol. Fr.19, 129–140.Google Scholar
  3. Burr, A. H. & Duncan, M. J., 1972. Portable spectroradiometer for underwater environments. Limnol. Oceanogr.17, 466–474.Google Scholar
  4. Castric-Fey, A., Girard-Descatoire, A., Lafargue, F., & L'Hardy-Halos, M.-T., 1973. Etagement des algues et des invertébrés sessiles dans l'Archipel de Glénan. Helgoländer wiss. Meeresunters.24, 490–509.CrossRefGoogle Scholar
  5. Descatoire, A., Fey, A. & Lafargue, F., 1969. Les peuplements sessiles de l'Archipel de Glénan. Introduction. Vie Milieu20, 171–176.Google Scholar
  6. Drew, E. A., 1969. Photosynthesis and growth of attached marine algae down to 130 metres in the Mediterranean. Int. Seaweed Symp.6, 151–159.Google Scholar
  7. — 1974a. An ecological study ofLaminaria ochroleuca Pyl. growing in the straits of Messina. J. exp. Biol. Ecol.15, 11–24.CrossRefGoogle Scholar
  8. — 1974b. Light inhibition of photosynthesis in macro-algae. Br. phycol. J.9, 217–218.Google Scholar
  9. Feldmann, J., 1937. Les algue de la côte des Albères. I–III. Cyanophycées, Chlorophycées, Phéophycées. Revue algol.9, 1–197.Google Scholar
  10. Fredj, G., 1972. Compte rendu de plongée en SP 300 sur les fonds àLaminaria rodriguezii Bornet de la Pointe de Revellata (Corse). Bull. Inst. océanogr., Monaco71 (1421), 1–42.Google Scholar
  11. Gargas, E., 1975. A manual for phytoplankton primary production studies in the Baltic. Baltic mar. Biol. Publs2, 1–88.Google Scholar
  12. Gessner, F., 1955. Hydrobotanik. VEB Dt. Verl. d. Wiss., Berlin,1, 1–517.Google Scholar
  13. Giaccone, G., 1972. Struttura, ecologia e corologia dei popolamenti a Laminarie dello stretto di Messina e del mare di Alboran. Memorie Biol. mar. Oceanogr.2, 37–59.Google Scholar
  14. Gordon, H. R. & Dera, J., 1969. Irradiance attenuation on sea water off southeast Florida. Bull. mar. Sci.19, 279–285.Google Scholar
  15. Hartog, C. den, 1959. The epilithic algal communities occurring along the coast of the Netherlands. Wentia,1, 3–241.Google Scholar
  16. Hoek, C. van den, Breeman, A. M., Bak, R. P. M. & Buurt, G. van, 1978. The distribution of algae, corals and gorgonians in relation to depth, light attenuation, water movement and grazing pressure in the fringing coral reef of Curaçao, Netherlands Antilles. Aquat. Bot.5, 1–46.CrossRefGoogle Scholar
  17. Holmes, R. W. & Snodgrass, J. M., 1961. A multiple-detector irradiance meter and electronic depth-sensing unit for use in biological oceanography. J. mar. Res.19, 40–56.Google Scholar
  18. Incoll, L. D., Long, S. P. & Ashmore, M. R., 1977. SI units in publications in plant science. Curr. Adv. Plant Sci.28, 331–343.Google Scholar
  19. Ivanoff, A., 1957. Contribution à l'étude des propriétés optiques de l'eau de mer en Bretagne et en Corse, et la théorie de la polarisation sous-marine. Annls Géophys.13, 22–53.Google Scholar
  20. —, Jerlov, N. G. & Waterman, T. H., 1961. A comparative study of irradiance, beam transmittance and scattering in the sea near Bermuda. Limnol. Oceanogr.6, 129–148.Google Scholar
  21. Jerlov, N. G., 1954. Colour filters to simulate the extinction of daylight in the sea. J. Cons. perm. Explor. Mer20, 156–159.Google Scholar
  22. —, 1966. Aspects of light measurement in the sea. In: Light as an ecological factor. Ed. by R. Bainbridge, G. C. Evans & O. Rackham. Blackwell, Oxford, 91–98.Google Scholar
  23. —, 1968. Optical oceanography. Elsevier, Amsterdam, 194 pp.Google Scholar
  24. —, 1974. A simple method for measuring quanta irradiance in the ocean. Rep. Kjøb. Univ. Inst. Fys. Oceanogr.24, 1–7.Google Scholar
  25. —, 1976. Marine optics. Elsevier, Amsterdam, 231 pp.Google Scholar
  26. — & Nygård, K., 1969. A quanta and energy meter for photosynthetic studies. Rep. Kjøb. Univ. Inst. Fys. Oceanogr.10, 1–19.Google Scholar
  27. Joseph, J., 1949. Über die Messung des “Vertikalen Extinktionskoeffizienten”. Dt. hydr. Z.2, 255–267.CrossRefGoogle Scholar
  28. Jupp, B. P. & Drew, E. A., 1974. Studies on the growth ofLaminaria hyperborea (Gunn.) Fosl. I. Biomass and productivity. J. exp. mar. Biol. Ecol.15, 185–196.CrossRefGoogle Scholar
  29. Kain, J. M., 1971. Continuous recording of underwater light in relation toLaminaria distribution. In: Fourth European Marine Biology Symposium. Ed. by D. J. Crisp. Cambridge Univ. Press, London, 335–346.Google Scholar
  30. — 1976. The biology ofLaminaria hyperborea. VIII. Growth on cleared areas. J. mar. biol. Ass. U.K.56, 267–290.Google Scholar
  31. —, Drew, E. A. & Jupp, B. P., 1976. Light and the ecology ofLaminaria hyperborea II. In: Light as an ecological factor. Ed. by G. C. Evans, R. Bainbridge & O. Rackham. Blackwell, Oxford,2, 63–92.Google Scholar
  32. Kubin, S., 1971. Measurement of radiant energy. In: Plant photosynthetic production. Ed. by Z. Sestak, J. Catsky & P. G. Jarvis. Junk, The Hague, 702–765.Google Scholar
  33. Lang, J. C., 1974. Biological zonation at the base of a reef. Am. Scient.62, 271–281.Google Scholar
  34. Larkum, A. W. D., Drew, E. A. & Crossett, R. N., 1967. The vertical distribution of attached marine algae in Malta. J. Ecol.55, 361–371.Google Scholar
  35. Levring, T., 1969. Light conditions, photosynthesis and growth of marine algae in coastal and clear oceanic water. Int. Seaweed Symp.6, 235–244.Google Scholar
  36. Lüning, K. 1970. Tauchuntersuchungen zur Vertikalverteilung der sublitoralen Helgoländer Algenvegetation. Helgoländer wiss. Meeresunters.21, 271–291.CrossRefGoogle Scholar
  37. —, 1971. Seasonal growth ofLaminaria hyperborea under recorded underwater light conditions near Helgoland. In: Fourth European Marine Biology Symposium. Ed. by D. J. Crisp. Cambridge Univ. Press, Cambridge, 347–361.Google Scholar
  38. Lüning, K., 1980. Critical levels of light and temperature regulating the gametogenesis of threeLaminaria spp. (Phaeophyceae). J. Phycol. (In press).Google Scholar
  39. Mojo, L. & Buta, G. 1970. Osservazione dei fondali dello stretto di Messina mediante TV subacquea. Accad. Peloritana, de Pericolanti50, 65–71.Google Scholar
  40. Molinier, R., 1960a. Etude des biocoenoses marines du Cap Corse. I. Vegetatio9, 121–192.Google Scholar
  41. — 1960b. Etude des biocoenoses marines du Cap Corse. II. Vegetatio9, 217–312.Google Scholar
  42. Morel, A. & Smith, R. C., 1974. Relation between total quanta and total energy for aquatic photosynthesis. Limnol. Oceanogr.19, 591–600.Google Scholar
  43. Neushul, M., 1967. Studies of subtidal marine vegetation in western Washington. Ecology48, 83–94.Google Scholar
  44. —, 1971. Submarine illumination inMacrocystis beds. Nova Hedwigia (Beih.)32, 241–254.Google Scholar
  45. Norton, T. A., Ebling, F. J. & Kitching, J. A., 1971. Light and the distribution of organisms in a sea cave. In: Fourth European marine biology symposium. Ed. by D. J. Crisp. Univ. Press, Cambridge, 409–432.Google Scholar
  46. Pérès, J. M., 1957. Essai des communautés benthiques marines du globe. Recl. Trav. Stn mar. Endoume13 (22), 23–54.Google Scholar
  47. —, 1967a. The mediterranean benthos. Oceanogr. mar. Biol.5, 449–533.Google Scholar
  48. —, 1967b. Les biocoenoses benthiques dans le système phytal. Recl. Trav. Stn mar. Endoume58 (42), 1–113.Google Scholar
  49. — & Molinier, R., 1957. Compte-rendu du colloque tenu à Gênes par le comité du benthos de la commission internationale pour l'exploration scientifique de la mer Méditerranée. Recl. Trav. Stn mar. Endoume13 (22), 5–15.Google Scholar
  50. —, & Picard, J., 1956. Considérations sur l'étagement des formations benthiques. Recl. Trav. Stn mar. Endoume11 (18), 11–16.Google Scholar
  51. ——, 1964. Nouveau manuel de bionomie benthique de la mer Méditerranée. Recl. Trav. Stn mar. Endoume31 (47), 1–137.Google Scholar
  52. Smith, R. C., 1969. An underwater spectral irradiance collector. J. mar. Res.27, 111–120.Google Scholar
  53. Steeman-Nielsen, E., 1974. Light and primary production. In: Optical aspects of oceanography. Ed. by N. G. Jerlov & E. Steeman-Nielsen. Acad. Press, London, 361–388.Google Scholar
  54. Stephenson, T. A. & Stephenson, A., 1949. The universal features of zonation between tide-marks on rocky coasts. J. Ecol.37, 289–305.Google Scholar
  55. Szeicz, G., 1974. Solar radiation for plant growth. J. appl. Ecol.11, 617–636.Google Scholar
  56. Tyler, J. E., 1973. Applied radiometry. Oceanogr. mar. Biol.11, 11–25.Google Scholar
  57. —, 1975a. Photosynthetic radiant energy. Recommendations. SCOR working group 15 (with UNESCO and IAPSO). SCOR Executive Meeting18, 30–43.Google Scholar
  58. —, 1975b. Announcement. Limnol. Oceanogr.20, 680.Google Scholar
  59. — & Smith, R. C., 1970. Measurements of spectral irradiance underwater. In: Ocean Sciences. Ed. by D. A. Wilson. Naval Undersea Center, San Diego,1, 1–103.Google Scholar
  60. Weinberg, S. & Cortel-Breeman, A., 1978. The estimation of the yearly cycle of submarine irradiance for ecological purposes. A methodological example based on data from Banyuls-sur-Mer. Bijdr. Dierk.48, 35–44.Google Scholar
  61. Westlake, D. F., 1965. Some problems in the measurement of radiation under water: a review. Photochem. Photobiol.4, 849–868.Google Scholar

Copyright information

© Biologischen Anstalt Helgoland 1979

Authors and Affiliations

  • K. Lüning
    • 1
  • M. J. Dring
    • 2
  1. 1.Biologische Anstalt Helgoland (Meeresstation)HelgolandFederal Republic of Germany
  2. 2.Department of BotanyQueen's University of BelfastBelfastNorthern Ireland

Personalised recommendations