Skip to main content
Log in

Numerical simulations of the night 2 data of the 1980 ASCOT experiments in the California Geysers area

Numerische Simulation der Daten aus der 2. Nacht des ASCOT-Experiments 1980 im kalifornischen Geysirgebiet

  • Published:
Archives for meteorology, geophysics, and bioclimatology, Series A Aims and scope Submit manuscript

Summary

A three-dimensional, time dependent hydrodynamic primitive equation model was used to simulate the distribution of nocturnal drainage winds, temperature, and turbulence in the California Geysers area. The case studied here (night 2) was under the condition that the ambient airflow was easterly and the direction of main drainage flow was westerly, The computed depth of drainage flow was less than 50 m at the ridge, and increased to 200 m at the valley, which agreed well with the observation. The computed wind speed at the ridge was smaller than the observation, but it agreed well at the valley site, Vertical wind variances measured by a doppler sodar indicated relatively large turbulence despite the fact that stable density stratification dominated throughout the night. The computed vertical wind variances were also larger than those observed over flat terrain, but smaller than the values recorded by the doppler sodar.

The computed wind vectors and turbulence were used to simulate the surface concentration of perflourocarbon trace gas. The model used is based on a random-particle statistical method. One particle per second was released for one hour at the source site, and the locations of particles were computed at every 10 sec. An imaginary box of 10x10x4 m (vertical) was considered at each of 39 surface sampling stations, and the number of particles collected for two hours was counted, from which concentration was determined. A cross-correlation coefficient of 0.82 was obtained between the computed and observed concentrations at the 39 sampling stations. Other statistics indicate that twenty percent of the computed concentrations were within a factor of two of the observations, 50% within a factor of 5 and 62% within a factor of 10.

Zusammenfassung

Zur Simulation des nächtlichen Abflusses, der Temperatur und der Turbulenz im kalifornischen Geysirgebiet wurde ein dreidimensionales, zeitabhängiges, hydrodynamisches Modell verwendet, das auf den Grundgleichungen beruht. Im hier untersuchten Fall war der vorherrschende Wind östlich, während der Abfluß aus westlicher Richtung erfolgte. Die Mächtigkeit des Abflusses wurde mit weniger als 50 m beim Kamm und etwa 200 m im Tal berechnet, was gut mit den Beobachtungen übereinstimmt. Die berechnete Windgeschwindigkeit war beim Kamm zu gering, entsprach aber im Tal den Beobachtungen. Mit Hilfe der berechneten Windvektoren und Turbulenzen war die Oberflächenkonzentration des ausgebrachten Perfluorkarbongases zu simulieren. Das verwendete Modell basiert auf einer “random walk”-Methode. Es wurde für die 39 Meßstellen ein Kreuzkorrelationskoeffizient von 0.82 zwischen beobachteten und berechneten Konzentrationen erreicht.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dickerson, M. H.: An Overview, Current Status, and Future Plans for the DOE Atmospheric Studies in Complex Terrain (ASCOT) Program. Second Conference on Mountain Meteorology, November 9–12, 1981, Steamboat Springs, Colorado, American Meteorological Society, pp. 10–13 (1981).

    Google Scholar 

  2. Gudiksen, P. H.: ASCOT Data From the 1980 Field Experiment Program in the Anderson Creek Valley, California. USID-88874-80, ASCOT-83-1, Lawrence Livermore National Laboratory, Vol. 1, 2, and 3, pp. 1589 (1983).

  3. Yamada, T.: A Numerical Simulation of Nocturnal Drainage Flow. J. Met. Soc.59, 108–122 (1981).

    Google Scholar 

  4. Yamada, T.: A Numerical Model Study of Turbulent Airflow In and Above a Forest Canopy. J. Met. Soc.60, 439–454 (1982).

    Google Scholar 

  5. Yamada, T.: Simulations of Nocturnal Drainage Flows by aq 2 l Turbulence Closure Model. J. Atmos. Sci.40, 91–106 (1983).

    Article  Google Scholar 

  6. Mellor, G. L., Yamada, T.: Development of a Turbulence Closure Model for Geophysical Fluid Problems. Rev. of Geophys. and Space Phys.20, 851–875 (1982).

    Google Scholar 

  7. Sasamori, T.: The Radiative Cooling Calculation for Application to General Circulation Experiments. J. Appl. Met.7, 721–729 (1968).

    Article  Google Scholar 

  8. Mellor, G. L., Yamada, T.: A Hierarchy of Turbulence Closure Models for Planetary Boundary-Layers. J. Atmos. Sci.31, 1791–1806 (1974).

    Article  Google Scholar 

  9. Yamada, T.: The Critical Richardson Number and the Ratio of the Eddy Transport Coefficients Obtained From a Turbulence Closure Model. J. Atmos. Sci.32, 926–933 (1975).

    Article  Google Scholar 

  10. Dyer, A. J., Hicks, B. B.: Flux-Gradient Relationships in the Constant Flux Layer. Quart. J. R. Met. Soc.96, 715–721 (1970).

    Google Scholar 

  11. Yamada, T.: A Three-Dimensional, Second-Order Closure Numerical Model of Mesoscale Circulations in the Lower Atmosphere: Description of the Basic Model and an Application to the Simulation of the Environmental Effects of a Large Cooling Pond. ANL/RER-78-1, Argonne National Laboratory, Argonne, Illinois, pp. 67 (1978).

    Google Scholar 

  12. Coulter, R. L., Martin, T. J.: Remote Sensing of Winds and Turbulence Above Complex Terrain During ASCOT-1980. ANL/ER-83-1, ASCOT-83-4, Argonne National Laboratory, pp. 166 (1983).

  13. Ogawa, Y., Ohara, T.: Observation of the Turbulent Structure in the Planetary Boundary-Layer With a Kytoon-Mounted Ultrasonic Anemometer System. Boundary-Layer Met.22, 123–131 (1982).

    Article  Google Scholar 

  14. Legg, B. J., Raupach, M. F.: Markov-Chain Simulation of Particle Dispersion in Inhomogencous Flows: The Mean Drift Velocity Induced by a Gradient in Eulerian Velocity Variance. Boundary-Layer Met.24, 3–13 (1982).

    Article  Google Scholar 

  15. Fox, D. G.: Judging Air Quality Model Performance. Bull. Amer. Met.62, 599–609 (1981).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yamada, T. Numerical simulations of the night 2 data of the 1980 ASCOT experiments in the California Geysers area. Arch. Met. Geoph. Biocl. A. 34, 223–247 (1985). https://doi.org/10.1007/BF02277449

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02277449

Keywords

Navigation