Skip to main content
Log in

Some features of the ozone climatology of Ontario, Canada and possible contributions of stratospheric ozone to surface concentrations

Grundlagen der Ozonklimatologie der Provinz Ontario, Kanada, unter Berücksichtigung stratosphärischer Ozonheiträge zu den Konzentrationen in Bodennähe

  • Published:
Archives for meteorology, geophysics, and bioclimatology, Series A Aims and scope Submit manuscript

Summary

Background ozone concentration displayed distinct seasonal variations at all stations, with a maximum of about 40 ppb in spring and a minimum of about 23 ppb in autumn. The monthly and yearly mean diurnal variations of ozone at urban stations exhibited bi-modal characteristics not evident at rural sites. Two daily maxima and minima were recorded at urban stations, but only one maximum and one minimum at rural sites. The second minimu min the evening at urban stations was shown to be related to high levels of nitric oxide, while nighttime heat island was considered the main cause of the second maximum. One-day resultant trajectories show that the most frequent and highest ozone concentrations were associated with a relatively light to moderate south to southwesterly flow but not with light or with strong winds. Although there were several recognizable meteorological regimes associated with elevated ozone concentrations over Ontario, those with weak pressure gradients favourable for the onset of lake breeze or with southwesterly flows on the west side of slow-moving high pressure centres crossing the eastern United States were the most frequent and resulted in the highest ozone concentrations. Ozone maxima over Ontario may mostly be attributed to long distance transport of emissions from major industrial areas south of the border. However, tropospheric and stratospheric contributions cannot be ruled out and may even be a major source at times. A case study of possible stratospheric ozone influx into the troposphere is presented.

Zusammenfassung

Der natiirliche Pegel der Ozonkonzentrationen zeigt an allen Stationen einen ausgeprägten jahreszeitlichen Gang mit einem FrüWingsmaximum von 40 ppb and einem Herbstminimum von ungefär 23 ppb. Stationen in städtischer Umgebung weisen einen bimodalen, monatlichen und jährlichen, mittleren Tagesgang auf, der an ländlichen Stationen fehlt. Zwei tägliche Maxima und Minima warden an Stadtstationen registriert, jedoch nur je ein Maximum und Minimum an Landstationen. Das abendliche Sekundärminimum an Stadtstationen ist mit hohen Stickoxydpegeln verbunden, während der nächtliche Wärme-inseleffekt für das sekundäre Ozonmaximum verantwortlich ist. Vie rundzwanzigstündige Trajektorien das resultierenden Windes zeigen, daß die haufigsten and höchsten Ozon-konzentratione nbei relativ leichten bis mäßigen südlichen bis südwestlichen Luftströmunge nauftreten, jedoch nicht bei ganz leichten and bei starken Winden. Mehrere meteorologische Regime sind erkennbar mit erhöhten Ozonkonzentrationen über Ontario verbunden. Am häufigsten führen allerdings jene mit schwachem Druckgradienten, die das Auftrete neines Seewindes begünstigen und jene, die mit einer südwestlichen Strömung an der Westseite eines sich langsam verlagemden Hochdruckgebietes, das die östlichen Vereinigten Staaten iiberquert, verbunden sind, zu hohen Ozonpegeln. Ozonmaxima über Ontario können hauptsäcluich dem Ferntransport der Emissionen aus den größeren Industriegebieten südlich der Grenze zugeschrieben werden. Troposphärische and stratosphärische Quellen dürfen jedoch nicht ausgeschlossen werden und konnen manchmal sogar den Hauptbeitrag liefern. Ein Beispiel für stratosphärisches Einströmen von Ozon in die Troposphere wird geboten.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Air Quality Monitoring Reports. Ontario Ministry of Environment, Toronto, Canada (1978).

  2. Altshuller, A.: Association of Oxidant Episodes with Warm Stagnating Anticyclones. J. Air Pollut. Control Ass.28, 152–155 (1978).

    Google Scholar 

  3. Anlauf, K., Olson, M., Wiebe, H.: Atmospheric Transport of Particulate Sulphate and Ozone into the Toronto Region and its Correlation with Visibility. Atmos. Pollut.8, 153–158 (1980).

    Google Scholar 

  4. Chung, Y.: Ground-level Ozone and Regional Transport of Air Pollutants. J. Appl. Met.16, 1127–1136 (1977).

    Article  Google Scholar 

  5. Coffey, P., Stasuik, W., Mohen, V.: Ozone in Rural and Urban Areas of New York States. EPA-600/3-77-0012 International Conference of Photochemical Pollution and Its Control (1977).

  6. Crutzen, P.: A Discussion of the Chemistry of Some Minor Constituents in the Stratosphere and Troposphere. Pure and Applied Geophysics106–108 (1973).

  7. Danielsen, E. F.: The Laminar Structure of the Atmosphere and its Relation to the Concept of the Tropopause. Arch. Met. Geoph. Biokl., Ser. A11, 293–332 (1959).

    Google Scholar 

  8. Gidel, L.: General Circulation Model Estimates of the Net Vertical Flux of Ozone in the Lower Stratosphere and the Implications for the Tropospheric Zone Budget. J. Geophys. Res.85, 4049–4058 (1980).

    Google Scholar 

  9. Korshover, J.: Climatology of Stagnant Anticyclones East of the Rocky Mountains, 1936–1975. NOAA, Technical Memorandum ERL, ARL-55, Air Resources Laboratories, Silver Spring, Maryland, U.S.A. (1976).

    Google Scholar 

  10. Libby, W. F.: Radioactive Fallout. United States Atomic Energy Comm. Washington, D.C., Release, 5-7-59, pp. 36 (1959).

  11. Mahlman, J. D.: Dynamical Mechanisms Producing Large-Scale Transport of Atmospheric Trace Substances. NPS-51MZ70101A, U.S. Naval Postgraduate School, Monterey, California, U.S.A. (1970).

    Google Scholar 

  12. Mahlman, J. D.: On the Maintenance of the Polar Front Jet Stream. J. Atmos. Sci.30, 544–557 (1973).

    Article  Google Scholar 

  13. Mukammal, E. I., Neumann, H. H., Gillespie, T. J.: Meteorological Conditions Associated with Ozone in Southwestern Ontario, Canada. Atmos. Environm.16, 2095–2106 (1982).

    Article  Google Scholar 

  14. Murgatroyd, R. J.: Estimation from Geostrophic Trajectories of Horizontal Diffusivity in the Mid-latitude Troposphere and Lower Stratosphere. Quart. J. R. Met. Soc.95, 40–62 (1969).

    Google Scholar 

  15. Olson, M., Oikawa, K., Macafee, A.: A Trajectory Model Applied to the Long-range Transport of Air Pollutants. Atmospheric Environment Service, Environment Canada, Downsview, Ontario, Canada (1978).

    Google Scholar 

  16. Ormrod, D. P., Proctor, J. A., Hofstra, G., Phillips, M. L.: Air Pollution Effects on Agricultural Crops in Ontario. A Review-Can. J. Plant Sci.60, 1023–1030 (1980).

    Google Scholar 

  17. Portelli, R. V.: Mixing Heights, Wind Speeds and Ventilation Coefficient for Canada. Climatological Studies No. 31. Atmospheric Environment Service, Downsview, Ontario, Canada (1977).

    Google Scholar 

  18. Reed, R. J., German, K. E.: A Contribution to the Problem of Stratospheric Diffusion by Large-Scale Mixing, Mon. Weath. Rev.93, 313–321 (1965).

    Google Scholar 

  19. Reiter, E. R.: A Case Study of Radioactive Fallout. J. Appl. Met.2, 691–705 (1963).

    Article  Google Scholar 

  20. Reiter, E. R.: Atmospheric Transport Processes, Part 3. Hydrodynamic Tracers. AEC Critical Review Series, TID-25731, 1972.

  21. Reiter, E. R.: Atmospheric Transport Processes, Part 4. Radioactive Tracers, Technical Information Centre, U.S. Department of Energy, U.S.A., TID-27114, 1978.

    Google Scholar 

  22. Staley, D. O.: Evaluation of Potential — Vorticity Changes Near the Tropopause and the Related Vertical Motions, Vertical Advection of Vorticity, and Transfer of Radioactive Debris from Stratosphere to Troposphere. J. Met.17, 591–620 (1960).

    Google Scholar 

  23. Viezee, W., Singh, H. B.: The Distribution of Beryllium-7 in the Troposphere: Implications on Stratospheric/Tropospheric Air Exchange. Geophys. Res. Lett.7, 805–808 (1980).

    Google Scholar 

  24. Wolff, G. T., Kelly, N. A., Ferman, M. A.: Source Regions of Summertime Ozone and Haze Episodes in the Eastern United States. Environmental Science Dept. (No. 110), General Motors Research Labs. (3701), Warren, MI 48090 (1981).

    Google Scholar 

  25. Wolff, G. T., Lioy, P.: Development of an Ozone River Associated with Synoptic Scale Episodes in the Eastern United States. Environm. Sci. Technol.14, 1257–1260 (1980).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

With 16 Figures

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mukammal, E.I., Neuman, H.H. & Nichols, T.R. Some features of the ozone climatology of Ontario, Canada and possible contributions of stratospheric ozone to surface concentrations. Arch. Met. Geoph. Biocl. A. 34, 179–211 (1985). https://doi.org/10.1007/BF02277447

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02277447

Keywords

Navigation