Skip to main content
Log in

Ecological factors and adaptive processes in N2-fixing bacterial populations of the plant environment

  • Microbial Ecology of Diazotrophic Bacteria
  • Published:
Plant and Soil Aims and scope Submit manuscript

Summary

Physiology and genetics of non-symbiotic N2-fixing bacteria have made much progress in recent years, especially in the case of a few reference strains. Nevertheless, understanding the ecology of diazotrophs cannot be achieved by studying only laboratory microorganisms. It is necessary to study naturally-occurring populations, to characterize their densities, size, composition, variability and variations in order to understand how a plant can select a rhizosphere population from a soil population. Very few comparisons of phenotypic diversity and dominant phenotypes in these two habitats have been made up to now. More studies of this type would allow a better knowledge of the selective pressures which actually drive the shift of population and they would permit investigation of the underlying mechanisms. These can vary from mere metabolic adaptation to selection of pre-adapted genotypes. A third mechanism is possible in which ‘pre-adapted’ genes are maintained in soil populations at very low frequencies and energy costs, and whose transfer is triggered by the selective factor to which they constitute an adaptation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aho P E, Seidler R J, Evans H J and Raju P N 1974 Distribution, enumeration and identification of nitrogen-fixing bacteria associated with decay in living white fir trees. Phytopathology 64, 1413–1420.

    Google Scholar 

  2. Anderson G R 1955 Nitrogen fixation by Pseudomonas-like soil bacteria. J. Bacteriol. 70, 129–133.

    Google Scholar 

  3. Baker T G and Attiwill P M 1984 Acetylene reduction in soil and litter from pine and eucalypt forests in south-eastern Australia. Soil Biol. Biochem. 16, 241–245.

    Google Scholar 

  4. Balandreau J 1983 Microbiology of the association. Can. J. Microbiol. 29, 851–859.

    Google Scholar 

  5. Balandreau J and Knowles R 1978 The rhizosphere.In Interactions between nonpathogenic soil microorganisms and plants. Ed. Y. Dommergues. Elsevier pp 243–268.

  6. Balandreau J P, Rinaudo G, Oumarov M M and Dommergues Y 1976 Asymbiotic N2-fixation in paddy soils.In The Proc. 1st Intern. Symp. N2-fixation. Eds. W E Newton and C J Nyman. Washington State University Press, Pullman, vol. 2, 611–628.

    Google Scholar 

  7. Baldani V L, Baldani J I and Döbereiner J 1983 Effects of Azospirillum inoculation on root infection and nitrogen incorporation in wheat. Can. J. Microbiol. 29, 924–929.

    Google Scholar 

  8. Baldani V L D and Döbereiner J 1980 Host-plant specificity in the infection of cereals withAzospirillum spp. Soil Biol. Biochem. 12, 433–439.

    Google Scholar 

  9. Bally R, Thomas-Bauzon D, Heulin Th, Balandreau J, Richard C and De Ley J 1983 Determination of the most frequent N2-fixing bacteria in a rice rhizosphere. Can. J. Microbiol. 29, 881–887.

    Google Scholar 

  10. Barber L E, Tjepkema J D, Russel S A and Evans H J 1976 Acetylene reduction (Nitrogen fixation) associated with corn inoculated withSpirillum. Appl. Environ. Microbiol. 32, 108–113.

    Google Scholar 

  11. Barak R, Nur I, Okon Y and Henis Y 1982 Aerotactic response ofAzospirillum brasilense. J. Bacteriol. 152, 643–649.

    Google Scholar 

  12. Barraquio W L, Guzman M R de, Barrion M and Watanabe I 1982 Population of aerobic heterotrophic nitrogen-fixing bacteria associated with wetland and dryland rice. Appl. Environ. Microbiol. 43, 124–128.

    Google Scholar 

  13. Becking J H 1974 Nitrogen fixing bacteria of the genus Beijerinckia. Soil Science, 118, 196–212.

    Google Scholar 

  14. Berg R H, Tyler M E, Novick N J, Vasil V and Vasil I K 1980 Biology of Azospirillum-Sugarcane associations: enhancement of nitrogenase activity. Appl. Environ. Microbiol. 39, 642–649.

    Google Scholar 

  15. Brewin N J, De Jong T M, Phillips D A and Johnston A W B 1980 Co-transfer of determinants for hydrogenase act vity and nodulation ability inRhizobium leguminosarum. Nature, London 288, 77–79.

    Google Scholar 

  16. Brown R 1933 Nitrogen fixation by the endophyte of Lolium. J. Agric. Sci. 23, 527–540.

    Google Scholar 

  17. Bushby H V A 1981 Antibiotic resistance markers and their role in Rhizobium ecology.In Current Perspectives in Nitrogen Fixation. Eds. A H Gibson and W E Newton. Australian Academy of Science, Canberra p. 275.

    Google Scholar 

  18. Chang P C and Knowles R 1965 Nonsymbiotic nitrogen fixation in some Quebec soils. Can. J. Microbiol. 11, 29–38.

    Google Scholar 

  19. Charyulu P B B N and Rao V R 1980 Influence of various soil factors on nitrogen fixation byAzospirillum spp. Soil Biol. Biochem. 12, 343–346.

    Google Scholar 

  20. Dalton M and Whittenbury R 1976 The acetylene reduction technique as an assay for the nitrogenase activity in the methane oxidizing bacteriumMethylococcus capsulatus strain Bath. Arch. Microbiol. 109, 147–151.

    Google Scholar 

  21. Dawson J O 1983 Dinitrogen fixation in forest ecosystems. Can. J. Microbiol. 29, 979–992.

    Google Scholar 

  22. De Bont J A M 1976 Nitrogen fixation by methane-utilizing bacteria. Antonie Van Leeuwenhoek 42, 245–253.

    Google Scholar 

  23. De Bont J A M and Mulder E G 1976 Invalidity of the acetylene reduction assay in alkaneutilizing, nitrogen-fixing bacteria. Appl. Environ. Microbiol., 31, 640–647.

    Google Scholar 

  24. De Ley J and Park I W 1966 Molecular biological taxonomy of some free-living nitrogen-fixing bacteria. Antonie van Leeuwenhoek 32, 6–16.

    Google Scholar 

  25. Deschamps A M, Richard C and Lebeault J M 1983 Bacteriology and nutrition of environmental strains ofKlebsiella pneumoniae involved in wood and bark decay. Ann. Microbiol. (Inst. Pasteur) 134A 189–196.

    Google Scholar 

  26. Dighton J 1978In vitro experiments simulating the possible fates of aphid honeydew sugars in soil. Soil Biol. Biochem. 10, 53–57.

    Google Scholar 

  27. Döbereiner J 1959 Influencia de cana-de-acúcar na populacao de ‘Beijerinckia’ do solo. Rev. Brasil. Biol. 19, 251–258.

    Google Scholar 

  28. Döbereiner J 1974 Nitrogen-fixing bacteria in the rhizosphereIn The Biology of Nitrogen Fixation. Ed. A Quispel. North Holland publishing company, pp. 86–120.

  29. Döbereiner J and Baldani V L D 1979 Selective infection of maize roots by streptomycinresistantAzospirillum lipoferum and other bacteria. Can. J. Microbiol. 25, 1264–1269.

    Google Scholar 

  30. Döbereiner J and De Polli H 1980 Diazotrophic rhizocoenoses.In Nitrogen Fixation. Eds W D P Stewart and J R Gallon. Academic Press. pp 301–333.

  31. Döbereiner J, Marriel I E and Nery M 1976 Ecological distribution ofSpirillum lipoferum Beijerinck. Can. J. Microbiol. 22, 1464–1473.

    Google Scholar 

  32. Dommergues Y and Jacq V 1970 Transformations microbiennes du soufre dans la rhizosphère et la spermosphère. Ann. Agron. 201–215.

  33. Dorner W 1924 Beobachtungen über das Verhalten der Sporen und vegetativen Formen vonBacillus amylobacter A.M. et Bredemann bei Nachweis und Reinzucht-versuchen. Lands. Jahrb. Schweiz. 38, 175–202.

    Google Scholar 

  34. Duval-Iflah Y, Raibaud P, Tancrede C and Rousseau M 1980 R-plasmid transfer fromSerratia liquefaciens toEscherichia coli in vitro andin vivo in the digestive tract of gnotobiotic mice associated with human fecal flora. Infect. Immun. 28 981–990.

    Google Scholar 

  35. Elleway R F, Sabine J R and Nicholas D J D 1971 Acetylene reduction by rumen microflora. Arch. Microbiol. 76, 277–291.

    Google Scholar 

  36. Evans H J, Campbell N E R and Hill, S 1972 Asymbiotic nitrogen-fixing bacteria from the surfaces of nodules and roots of legumes. Can. J. Microbiol. 18, 13–21.

    Google Scholar 

  37. Fred E B, Baldwin I L and McCoy E 1932 Root Nodule Bacteria and Leguminous Plants. Madison, University of Wisconsin.

    Google Scholar 

  38. Friedrich B, Hogrefe C and Schlegel H G 1981 Naturally occurring genetic transfer of hydrogen-oxidizing ability between strains ofAlcaligenes eutrophus. J. Bacteriol. 147, 198–205.

    Google Scholar 

  39. Garcia J L, Raimbault M, Jacq V, Rinaudo G and Roger P 1974 Activités microbiennes dans les sols de rizières du Sénégal: relations avec les caractéristiques physico-chimiques et influence de la rhizosphère. Rev. Ecol. Biol. Sol, 2 169–185.

    Google Scholar 

  40. Gaskins M H, Garcia M, Tien T M and Hubbell D H 1977 N2-fixation and growth substance production bySpirillum lipoferum and their effects on plant growth. Plant Physiol. 59, 128.

    Google Scholar 

  41. Genetello C, Van Larebeke N, Holsters M, De Picker A, Van Montagu M and Schell J 1977 Ti-plasmids of Agrobacterium as conjugative plasmids. Nature 265,561–563.

    Google Scholar 

  42. Gibson A H 1981 Some required inputs from basic studies to applied nitrogen fixation research.In Current Perspectives in Nitrogen Fixation. Eds A H Gibson and W E Newton. Australian Academy of Science, Canberra pp 6–7.

    Google Scholar 

  43. Gogotov J N and Schlegel H G 1974 N2-fixation by chemoautotrophic hydrogen bacteria. Arch. Microbiol. 97, 359–362.

    Google Scholar 

  44. Gowda T K S and Watanabe I 1983 Autoradiographic technique for screening chemolithotrophic hydrogen-utilizing bacteria. Can. J. Microbiol. 29, 1081–1086.

    Google Scholar 

  45. Haahtela K, Wartiovaara T, Sundman V and Skujins J 1981 Root-associated N2-fixation (acetylene reduction) by Enterobacteriaceae and Azospirillum strains in cold-climate Spodosols. App. Environ. Microbiol. 41, 203–206.

    Google Scholar 

  46. Handelsman J, Ugalde R A and Brill W J 1984Rhizobium meliloti competitiveness and the Alfafa agglutinin. J. Bacteriol. 157, 703–707.

    Google Scholar 

  47. Harris D and Dart P J 1972 Nitrogenase activity in the rhizosphere ofStachys sylvatica and some other dicotyledonous plants. Soil Biol. Biochem. 5, 277–279.

    Google Scholar 

  48. Hegazi N A, Amer H A and Monib M 1979 Enumeration of N2-fixing spirilla. Soil Biol. Biochem. 11, 437–438.

    Google Scholar 

  49. Hegazi N A, Monib M, Amer H A and Shokr E S 1983 Response of maize plants to inoculation with azospirilla and (or) straw amendment in Egypt. Can. J. Microbiol. 29, 888–894.

    Google Scholar 

  50. Heinrich D and Hess D 1983 Attraction ofAzospirillum lipoferum by media from wheat-Azospirillum association. Experientia Supplementum 48, 95–99.

    Google Scholar 

  51. Heulin T, Bally R and Balandreau J 1982 Isolation of a very efficient N2-fixing bacteria from the rhizosphere of rice. Experientia Supplementum 42, 92–99.

    Google Scholar 

  52. Heulin T, Weinhard P and Balandreu J 1983 Motility changes inAzospirillum lipoferum. Experientia Supplementum 48, 89–94.

    Google Scholar 

  53. Jagnow G 1982 Growth and survival ofAzospirillum lipoferum in soil and rhizosphere as influenced by ecological stress conditions. Experientia Supplementum 42, 100–107.

    Google Scholar 

  54. Jagnow G 1983 Nitrogenase (C2H2) activity in roots of non-cultivated and cereal plants: Influence of nitrogen fertilizer on populations and activity of nitrogen-fixing bacteria. Z. Pflanzenernaehr. Bodenkd. 146, 217–227.

    Google Scholar 

  55. Jensen H L 1965 Nonsymbiotic nitrogen fixation.In Soil Nitrogen. Eds. W V Bartholomew and F E Clark. Amer. Soc. Agron. Inc. Publisher, Madison, pp 436–480.

    Google Scholar 

  56. Jones W N and Smith M L 1926 On the fixation of atmospheric nitrogen byPhoma radicis callunae, including a new method for investigating nitrogen fixation in micro-organisms. Brit. J. Exp. Biol. 6, 167–182.

    Google Scholar 

  57. Jordan D C, McNicol P J and Marshall M R 1978 Biological nitrogen fixation in the terrestrial environment of a high arctic ecosystem (Truelove Lowland, Devon Island, N.W.T.). Can. J. Microbiol. 24, 643–649.

    Google Scholar 

  58. Jurgensen M F and Davey C B 1971 Non symbiotic nitrogen-fixing micro-organisms in forest and tundra soils. Plant and Soil 34, 341–356.

    Google Scholar 

  59. Kaputska L A and Rice F L 1976 Acetylene reduction (N2-fixation) in soil and old field succession in central Oklahoma. Soil Biol. Biochem. 8, 497–503

    Google Scholar 

  60. Kelly W J and Reanney D C 1984 Mercury resistance among soil bacteria: ecology and transferability of genes encoding resistance. Soil Biol. Biochem. 16, 1–8.

    Google Scholar 

  61. Kerr A, Manigault P and Tempe J 1977 Transfer of virulencein vivo andin vitro in Agrobacterium. Nature 265, 560–561.

    Google Scholar 

  62. Kleeberger A, Castorph H and Klingmuller W 1983 The rhizosphere microflora of wheat and barley with special reference to gram-negative bacteria. Arch. Microbiol. 136, 306–311.

    Google Scholar 

  63. Koch B L and Oya J 1974 Non-symbiotic nitrogen-fixation in some Hawaiian pasture soils. Soil Biol. Biochem. 6, 363–367.

    Google Scholar 

  64. Korhonen T K, Tarkka F, Ranta H and Haahtela K 1983 Type 3 fimbriae of Klebsiella sp., molecular characterization and role in bacterial adhesion to plant roots. J. Bacteriol. 155, 860–865.

    Google Scholar 

  65. Ladha J K, Barraquio W L and Watanabe I 1982 Immunological techniques to identify Azospirillum associated with wetland rice. Can. J. Microbiol. 28, 478–485.

    Google Scholar 

  66. Ladha J K, Barraquio W L and Watanabe I 1983 Isolation and identification of nitrogen-fixingEnterobacter cloacae andKlebsiella planticola associated with rice plants. Can. J. Microbiol. 29, 1301–1308.

    Google Scholar 

  67. Lamm R B and Neyra C A 1981 Characterization and cyst production of azospirilla isolated from selected grasses growing in New Jersey and New York. Can. J. Microbiol. 27, 1320–1325.

    Google Scholar 

  68. Larsen M J, Jurgensen M F, Harvey A E and Ward J C 1978 Dinitrogen fixation associated with sporophores ofFormitopsis pinicola, Fomes fomentarius, andEchinodontium tinctorium, Mycologia 70, 1217–1222.

    Google Scholar 

  69. Lee K J and Gaskins M H 1982 Increased root exudation of 1/14C-compounds by sorghum seedlings inoculated with nitrogen-fixing bacteria. Plant and Soil 69, 391–399.

    Google Scholar 

  70. Le Gall J, Senez J C and Pichionoty F 1954 Fixation de l'azote par les bactéries sulfato-reductrices. Isolement et caracterisation de souches actives. Ann. Inst. Pasteur, Paris 96, 223–230.

    Google Scholar 

  71. Line M A and Loutit M W 1973 Studies on non-symbiotic nitrogen fixation in New Zealand tussock-grassland soils. N.Z.J. Agric. Res. 16, 87–94.

    Google Scholar 

  72. Mackenzie M 1982 The Role of Nitrogen-Fixing Bacteria in Wood Decay. PhD Thesis, Washington State University 309 p.

  73. Macura J 1966 Interactions nutritionnelles plantes-bactéries et bases expérimentales de la bactérisation des graines. Ann. Inst. Pasteur 111 (Supp. no. 3), 9–38.

    Google Scholar 

  74. Magalhaes F M M, Patriquin D and Döbereiner J 1979 Infection of field grown maize withAzospirillum spp. Rev. Brasil. Biol. 39, 587–596.

    Google Scholar 

  75. Mahl M C, Wilson P W, Fife M A and Ewing W H 1965 Nitrogen fixation by members of the tribe Klebsielleae. J. Bacteriol. 89, 1482–1487.

    Google Scholar 

  76. Malik K A and Claus D 1979Xanthobacter flavus, a new species of nitrogen-fixing hydrogen bacteria. Int. J. Syst. Bacteriol. 29, 283–287.

    Google Scholar 

  77. Mandimba G, Heulin T, Bally R and Balandreau J 1984 Chemotaxis of free-living nitrogen fixing bacteria towards maize mucilage. Plant and Soil 90, 129–139.

    Google Scholar 

  78. Martin P and Glatzle A 1982 Mutual influences ofAzospirillum spp. and grass seedlings. Experientia Supplementum 42, 108–120.

    Google Scholar 

  79. McClung C R, Van Berkum P, Davis R E and Sloger C 1983 Enumeration and localization of N2-fixing bacteria associated with roots ofSpartina alterniflora Loisel. Appl. Environ. Microbiol. 45, 1914–1920.

    Google Scholar 

  80. Mishustin E N and Yemtsev V T 1973 Anaerobic nitrogen-fixing bacteria in U.S.S.R. soils, Soil Biol. Biochem. 5, 97–107.

    Google Scholar 

  81. Mishustin E N and Yemtsev V T 1975 Anaerobic nitrogen-fixing bacteria of different soil types.In Nitrogen Fixation by Free-living Micro-organisms. Ed. W D P Stewart. Cambridge Univ. press, pp 29–38.

  82. Murrell J C and Dalton H 1983 Nitrogen fixation in obligate methanotrophs. J. Gen. Microbiol. 129, 3481–3486.

    Google Scholar 

  83. Neilson A H and Sparell L 1976 Acetylene reduction (Nitrogen fixation) by Enterobacteriaceae isolated from paper mill process waters. Appl. Environ. Microbiol. 32, 197–205.

    Google Scholar 

  84. Nelson A D, Barber L E, Tjepkema J, Russell S A, Powelson R and Evans H J 1976 Nitrogen fixation associated with grasses in Oregon. Can. J. Microbiol. 22, 523–530.

    Google Scholar 

  85. Nelson D C, Waterbury J B and Jannasch H W 1982 Nitrogen fixation and nitrate utilization by marine and freshwater Beggiatoa. Arch. Microbiol. 133, 172–177.

    Google Scholar 

  86. Neyra C A, Döbereiner J, Lalande R and Knowles R 1977 Denitrification by N2-fixingSpirillum lipoferum. Can. J. Microbiol. 23, 300–305.

    Google Scholar 

  87. Nur I, Okon Y and Henis Y 1980 Comparative studies of nitrogen-fixing bacteria associated with grasses in Israel withAzospirillum brasilense. Can. J. Microbiol. 26, 714–718.

    Google Scholar 

  88. O'Connell A M, Grove T S and Malajczuk N 1979 Nitrogen fixation in the litter layer of eucalypt forests. Soil Biol. Biochem. 11, 681–682.

    Google Scholar 

  89. Okon Y, Albrecht S L and Burris R H 1977 Methods for growingSpirillum lipoferum and for counting it in pure culture and in association with plants. Appl. Environ. Microbiol. 33, 85–88.

    Google Scholar 

  90. Old K M and Nicolson T H 1975 Electromicroscopical studies of the microflora of roots of sand dune grasses. New Phytol. 74, 51–58.

    Google Scholar 

  91. Palleroni N J and Palleroni A V 1978 Alcaligenes latus, a new species of hydrogen-utilizing bacteria. Int. J. Syst. Bacteriol. 28, 416–424.

    Google Scholar 

  92. Patriquin D G 1981 New developments in grass-bacteria associations.In Advances in Agricultural Microbiology. Ed. N S Subba Rao. Oxford and IBH publish. pp 139–190.

  93. Patriquin D G 1982 Nitrogen fixation in sugar cane litter. Biol. Agric. Hortic. 1, 39–64.

    Google Scholar 

  94. Paul E A and Newton J D 1961 Studies of aerobic non-symbiotic nitrogen-fixing bacteria. Can. J. Microbiol. 7, 7–13.

    Google Scholar 

  95. Payne W J and Grant M A 1982 Influence of acetylene on growth of sulfate respiring bacteria. Appl. Environ. Microbiol. 43, 727–730.

    Google Scholar 

  96. Pearson H W, Howsley R and Williams S T 1982 A study of nitrogenase activity inMycoplana species and free-living actinomycetes. J. Gen. Microbiol. 128, 2073–2080.

    Google Scholar 

  97. Pedersen W L, Chakrabarty K, Klucas R V and Vidaver A K 1978 Nitrogen fixation (acetylene reduction) associated with roots of winter wheat and sorghum in Nebraska. Appl. Environ. Microbiol. 35, 129–135.

    Google Scholar 

  98. Pedrosa F O, Stephan M, Döbereiner J and Yates M G 1982 Hydrogen-uptake hydrogenase activity in nitrogen-fixingAzospirillum brasilense. J. Gen. Microbiol. 128, 161–166.

    Google Scholar 

  99. Petelle M 1984 Aphid honeydew sugars and soil nitrogen fixation. Soil Biol. Biochem. 16, 203–206.

    Google Scholar 

  100. Pine M J and Barker H A 1954 Studies on the methane bacteria. XI. Fixation of atmospheric nitrogen byMethanobacterium omelianskii. J. Bacteriol. 68, 589–591.

    Google Scholar 

  101. Proctor M H and Wilson P W 1958 Nitrogen fixation by Gram negative bacteria. Nature 182, 891.

    Google Scholar 

  102. Raimbault M 1975 Etude de l'influence inhibitrice de l'acétylène sur la formation biologique de méthane dans un sol de rizière. Ann. Microbiol. 126 A, 247–258.

    Google Scholar 

  103. Raimbault M, Rinaudo G, Garcia J L and Boureau M 1977 A device to study metabolic gases in the rice rhizosphere. Soil Biol. Biochem. 9, 193–196.

    Google Scholar 

  104. Rennie R J 1980 Dinitrogen-fixing bacteria: computer-assisted identification of soil isolates. Can. J. Microbiol. 26, 1275–1283.

    Google Scholar 

  105. Rennie R J 1981 A single medium for the isolation of acetylene-reducing (dinitrogen-fixing) bacteria from soils. Can. J. Microbiol. 27, 8–14.

    Google Scholar 

  106. Rennie R J, de Freitas J R, Ruschel A P and Vose P B 1982 Isolation and identification of N2-fixing bacteria associated with sugar cane (Saccharum sp.). Can. J. Microbiol. 28, 462–467.

    Google Scholar 

  107. Rennie R J and Larson RI 1979 Dinitrogen fixation associated with disomic chromosome substitution lines of spring wheat in the phytotron and in the field.In Associative Dinitrogen Fixation. Eds P B Vose and A P Ruschel, C.R.C. Press. Miami.

    Google Scholar 

  108. Reynders L and Vlassak K 1976 Nitrogen fixingSpirillum species in Belgian soils. Agricultura 24, 329–336.

    Google Scholar 

  109. Reynders L and Vlassak K 1978 Nitrogen fixation bySpirillum-plant root associations. Environmental biochemistry and geomicrobiology. Ed. W E Krumbein. Ann. Arbor Science publ. Vol 2: The Terrestrial Environment, pp 553–559.

  110. Reynders L and Vlassak K 1979 Conversion of tryptophan acid byAzospirillum brasilense. Soil Biol. Biochem. 11, 547–548.

    Google Scholar 

  111. Richard C 1973 Etude antigénique et biochimique de 500 souches de Klebsiella. Ann. Biol. Clin. 31, 295–303.

    Google Scholar 

  112. Rinaudo G 1982 Fixation hétérotrophe de l'azote dans la rhizosphère du riz. Thèse d'Etat, Université Paris-sud.

  113. Rondro Harisoa L, Barbouche A K, Heulin T, Rahman M, Marie R, Bardin R and Balandreau J 1984In vitro selection of plant genotypes and bacterial strains to use in the field for increasing non symbiotic nitrogen fixation in rice. Intern. Soc. Soil Science inter congress meeting of commission IV, Dhaka, Bangladesh,in press.

  114. Roper M M 1984 Wheat straw: an energy source for biological nitrogen fixation.In Advances in Nitrogen Fixation Research. Eds C Veeger and W E Newton. Nijhoff-Junk publ. p. 62.

  115. Roskoski J P 1981 Comparative C2H2 reduction and15N2 fixation in deciduous wood litter. Soil Biol. Biochem. 13, 83–85.

    Google Scholar 

  116. Rovira A D 1965 Interaction between plant roots and soil microorganisms. Ann. Rev. Microbiol. 19, 241–266.

    Google Scholar 

  117. Rubenchik L I 1960 Azobacter and its use in agriculture. Izdatel'stvo Akademii Nauk Ukrainskoi SSR Kiew, 1960 or Israel Program for Scientific Translations, Jerusalem 1963.

  118. Sampaio J A M, de Silva E M R, Döbereiner J, Yates M G and Pedrosa F O 1981 Autotrophy and methylotrophy inDerxia gummosa, Azospirillum brasilense andA. lipoferum.In Current Perspectives in Nitrogen Fixation. Eds A H Gibson and W E Newton. Australian academy of science, Canberra, p. 444.

    Google Scholar 

  119. Schank S C, Smith R L, Weiser G C, Zuberer D A, Bouton J H, Quesenberry K H, Tyler M E, Milam J R and Littell R C 1979 Fluorescent antibody technique to identifyAzospirillum brasilense associated with roots of grasses. Soil Biol. Biochem. 11, 287–296.

    Google Scholar 

  120. Schlegel H G 1976 The physiology of hydrogen bacteria. Antonie van Leeuwenhoek J. Microbiol. Serol. 42, 181–201.

    Google Scholar 

  121. Seidler R J, Aho P E, Raju P N and Evans H J 1972 Nitrogen fixation by bacterial isolates from decay in living white fir trees [Abies concolor (Gord. and Glend.) Lindl.], J. Gen. Microbiol. 73, 413–416.

    Google Scholar 

  122. Sharp R F and Millbank J W 1973 Nitrogen fixation in deteriorating wood. Experientia 29, 895–896.

    Google Scholar 

  123. Singh M, Kleeberger A and Klingmuller W 1983 Location of nitrogen fixation (nif)-genes on indigenous plasmids ofEnterobacter agglomerans. Molec. Gen. Gent 190, 373–378.

    Google Scholar 

  124. Singh M and Wenzel W 1982 Detection and characterization of plasmids in Azospirillum. Experientia Supplementum 42, 44–51.

    Google Scholar 

  125. Sisler F D and Zobell C E 1951 Nitrogen fixation by sulfate reducing bacteria indicated by nitrogen/argon ratios. Science 113, 511–512.

    Google Scholar 

  126. Smith D and Patriquin D G 1978 A survey of angiosperms in Nova Scotia for rhizosphere nitrogenase (acetylene-reduction) activity. Can. J. Bot. 56, 2218–2223.

    Google Scholar 

  127. Smith R L, Schank S C, Milam J R and Littell R C 1982 Statewide search for highly active associative N2-fixing systems. Soil Sci. Soc. Fla. Proc. 41, 122–126.

    Google Scholar 

  128. Smyk B and Ettlinger L 1963 Recherches sur quelques espèces d'Arthrobacter fixatrices d'azote isolées des roches karstiques alpines. Ann. Inst. Past. 105, 341–348.

    Google Scholar 

  129. Sprott G D, Jarrell K F, Shaw K M and Knowles R 1982 Acetylene as an inhibitor of methanogenic bacteria. J. Gen. Microbiol. 128, 2453–2462.

    Google Scholar 

  130. Subba Rao N S 1983 Nitrogen-fixing bacteria associated with plantation and orchard plants. Can. J. Microbiol. 29, 863–866.

    Google Scholar 

  131. Tabary F, Balandreau J and Bourillon R 1984 Purification of the rice embryo lectin and its binding to nitrogen-fixing bacteria from the rhizosphere of rice. Biochem. Biophys. Res. Commun. 119, 549–555.

    Google Scholar 

  132. Tarrand J J, Krieg N R and Döbereiner J 1978 A taxonomic study of theSpirillum lipoferum group, with descriptions of a new genus Azospirillum gen. nov. and two species,Azospirillum lipoferum (Beijerinck) comb. nov. andAzospirillum brasilense sp. nov.. Can. J. Microbiol. 24, 967–980.

    Google Scholar 

  133. Thomas Bauzon D, Weinhard P, Villecourt P and Balandreau J 1982 The spermosphere model. 1. Its use in growing, counting and isolating N2-fixing bacteria from the rhizosphere of rice. Can. J. Microbiol. 28, 922–928.

    Google Scholar 

  134. Tibelius K H and Knowles R 1983 Effect of hydrogen and oxygen on uptake-hydrogenase activity in nitrogen-fixing and ammonium-grownAzospirillum brasilense. Can. J. Microbiol. 29, 1119–1125.

    Google Scholar 

  135. Tien T M, Diem H G, Gaskins M H and Hubbell D H 1981 Polygalacturonic acid transeliminase production byAzospirillum species. Can. J. Microbiol. 27, 426–431.

    Google Scholar 

  136. Uchino F, Hamball G G and Yatazawa M 1984 Nitrogen-fixing bacteria from warty lenticellate bark of a mangrove tree,Bruguiera gymnorhiza (L.) Lamk. Appl. Environ. Microbiol. 47, 44–48.

    Google Scholar 

  137. Umali-Garcia M, Hubbell D H, Gaskins M H and Dazzo F B 1980 Association ofAzospirillum with grass roots. Appl. Environ. Microbiol. 39, 219–226.

    Google Scholar 

  138. Van Berkum P and Bohlool B B 1980 Evaluation of nirogen fixation by bacteria in association with roots of tropical grasses. Microbiol. Rev. 44, 491–517.

    Google Scholar 

  139. Vancura V, Abd el Malek Y and Zayed M N 1965Azotobacter andBeijerinckia in the soils and rhizospheres of plants in Egypt. Folia Microbiologica 10, 224–229.

    Google Scholar 

  140. Villemin G, Balandreau J and Dommergues Y 1974 Utilisation du test de réduction de l'acétylène pour la numération des bactéries libres fixatrices d'azote. Ann. Microbiol. 24, 87–94.

    Google Scholar 

  141. Voets J P and Debacher J 1956Pseudomonas azotogensis nov. spp. A new free-living nitrogen-fixing bacterium. Naturwissenschaften 43, 40–41.

    Google Scholar 

  142. Vose P B 1983 Developments in nonlegume N2-fixing systems. Can. J. Microbiol. 29, 837–850.

    Google Scholar 

  143. Watanabe I, Barraquio W L and Daroy M L 1982 Predominance of hydrogen-utilizing bacteria among N2-fixing bacteria in wetland rice roots. Can. J. Microbiol. 28, 1051–1054.

    Google Scholar 

  144. Watanabe I, Barraquio W L, De Guzman M R and Cabrera D A 1979 Nitrogen-fixing (Acetylene reduction) activity and population of aerobic-heterotrophic nitrogen-fixing bacteria associated with wetland rice. Appl. Environ. Microbiol. 37, 813–819.

    Google Scholar 

  145. Wood A G, Menezes E M, Dykstra C and Duggan D E 1982 Methods to demonstrate the megaplasmids (or minichromosomes) in Azospirillum. Experientia Supplementum 42, 18–34.

    Google Scholar 

  146. Wright S E and Weaver R W 1981 Enumeration and identification of nitrogen-fixing bacteria from forage grass roots. Appl. Environ. Microbiol. 42, 97–101.

    Google Scholar 

  147. Zuberer D A and Roch M 1982In vitro inhibition of nonsymbiotic nitrogen-fixing bacteria by rhizosphere actinomycetes associated with grasses. Can. J. Microbiol. 28, 705–709.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Balandreau, J. Ecological factors and adaptive processes in N2-fixing bacterial populations of the plant environment. Plant Soil 90, 73–92 (1986). https://doi.org/10.1007/BF02277388

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02277388

Key words

Navigation