Advertisement

Chromatographia

, Volume 38, Issue 9–10, pp 545–554 | Cite as

Rapid size characterization of chromatographic silicas by flow field-flow fractionation

  • S. K. Ratanathanawongs
  • J. C. Giddings
Originals

Summary

The particle size distributions of various silica support materials for high performance liquid chromatography (HPLC) and size exclusion chromatography (SEC) were obtained using flow/hyperlayer field-flow fractionation (Fl/Hy FFF), a form of flow FFF. The experimental procedure for each material required only 3–6 minutes. The resulting fractograms (representing detector response as a function of time) were mathematically treated to yield particle size distribution curves. Unlike most techniques, Fl/Hy FFF yields particle sizes free of any assumption about particle density or porosity. Approximate mean particle diameters and polydispersities were estimated directly from the fractograms and compared to those more correctly calculated from the size distribution curves. The importance of specifying the type of mean particle diameter (such, as area, mass, and number averages) being reported is illustrated. The good agreement between the FFF number-weighted size distributions and those obtained by scanning electron microscopy demonstrates the usefulness of Fl/Hy FFF for the rapid and accurate characterization of chromatographic silicas.

Key Words

Field-flow fractionation Flow field-flow fractionation Particle separation Particle size, measurement and distribution Chromatographic silica 

List of Symbols

c(ti)

corrected detector response at ti

% CV

percent coefficient of variation

% CVa

percent coefficient of variation from area distribution curve (Method II)

% CVp

% CV due to sample polydispersity contribution only

% CVpa

% CV polydispersity obtained from area distribution curve (Method II)

% CVpm

% CV polydispersity obtained from mass distribution curve (Method II)

% CVpn

% CV polydispersity obtained from number distribution curve (Method II)

% CVs

% CV due to system nonidealities

% CVt

% CV calculated from fractogram (Method I)

% CVSEM

% CV calculated from SEM

d

particle diameter

\(\bar d\)

first moment of size distribution curve

\(\bar d_a\)

area averaged particle diameter (Method II)

di

diameter eluting at ti

dj

series of diameters at equal intervals

\(\bar d_t\)

average particle diameter calculated from fractogram (Method I)

\(\bar d_m\)

mass average particle diameter (Method II)

\(\bar d_n\)

number average particle diameter (Method II)

h(di)

size distribution curve at di

Sd

diameter-based selectivity

ti

discrete time

tr

retention time

trl

retention time of particle of unit diameter

\(\dot V\)

channel flowrate

\(\dot V_c\)

cross flowrate

Greek σt

standard deviation of fractogram peak

σd

standard deviation of size distribution curve

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    L. R. Snyder, J. J. Kirkland, “Introduction to Modern Liquid Chromatography”, 2nd Ed., John Wiley, New York, 1979, p. 176.Google Scholar
  2. [2]
    E. L. Johnson, R. Stevenson, “Basic Liquid Chromatography”, Varian Associates, California, 1978, p. 25.Google Scholar
  3. [3]
    J. V. Dawkins, T. Stone, G. Yeadon, Polymer18, 1179 (1977).CrossRefGoogle Scholar
  4. [4]
    R. V. Vivilecchia, R. L. Cotter, R. J. Limpert, N. Z. Thimot, J. N. Little, J. Chromatogr.99, 407 (1974).CrossRefGoogle Scholar
  5. [5]
    K. K. Unger, M. G. Gimpel, J. Chromatogr.180, 93 (1979).CrossRefGoogle Scholar
  6. [6]
    M. Verzele, J. Lammens, M. Van Roelenbosch, J. Chromatogr.186, 435 (1979).CrossRefGoogle Scholar
  7. [7]
    K. D. McMurtrey, P. J. DesLauriers, Anal. Chem.55, 396 (1983).CrossRefGoogle Scholar
  8. [8]
    D. A. Hanggi, P. W. Carr, J. Liq. Chromatogr.7, 2323 (1984).Google Scholar
  9. [9]
    J. C. Giddings, M. N. Myers, K. D. Caldwell, J. W. Pav, J. Chromatogr.185, 261 (1979).CrossRefGoogle Scholar
  10. [10]
    J. C. Giddings, M. H. Moon, Anal. Chem.63, 2869 (1991).CrossRefGoogle Scholar
  11. [11]
    J. C. Giddings, S. K. Ratanathanawongs, B. N. Barman, M. H. Moon, G. Liu, B. L. Tjelta, M. E. Hansen, in “Colloid Chemistry of Silica”,H. Bergna, ed., Advances in Chemistry Series No. 234, American Chemical Society, Washington, DC, in press.Google Scholar
  12. [12]
    R. Karuhn, R. D. Wood, S. D. Wyatt, LC-GC4, 1072 (1986).Google Scholar
  13. [13]
    R. Ohmacht, I. Halasz, Chromatographia14, 216 (1981).CrossRefGoogle Scholar
  14. [14]
    K. D. Caldwell, Anal. Chem.60, 959A (1988).Google Scholar
  15. [15]
    M. Martin, P. S. Williams, in “Theoretical Advancement in Chromatography and Related Separation Techniques”,F. Dondi, G. Guiochon, eds., NATO ASI Series: Mathematical and Physical Sciences, Vol. 383, Kluwer, Dordrecht, 1992, p. 513.Google Scholar
  16. [16]
    J. C. Giddings, Science260, 1456 (1993).PubMedGoogle Scholar
  17. [17]
    T. Koch, J. C. Giddings, Anal. Chem.58, 994 (1986).CrossRefGoogle Scholar
  18. [18]
    H. K. Jones, B. N. Barman, J. C. Giddings, J. Chromatogr.455, 1 (1988).CrossRefGoogle Scholar
  19. [19]
    G. Liu, J. C. Giddings, Anal. Chem.63, 296 (1991).CrossRefGoogle Scholar
  20. [20]
    G. Liu, J. C. Giddings, Chromatographia34, 485 (1992).Google Scholar
  21. [21]
    S. K. Ratanathanawongs, J. C. Giddings, J. Chromatogr.467, 341 (1989).Google Scholar
  22. [22]
    S. K. Ratanathanawongs, J. C. Giddings, in “Chromatography of Polymers: Characterization by SEC and FFF”,T. Provder, ed., ACS Symp. Series 521, American Chemical Society, Washington, DC, 1993, chap. 2.Google Scholar
  23. [23]
    T. C. Schunk, J. Gorse, M. F. Burke, Sep. Sci. Technol.19, 633 (1984).Google Scholar
  24. [24]
    K. D. Caldwell, Y. S. Gao, Anal. Chem.65, 1764 (1993).CrossRefPubMedGoogle Scholar
  25. [25]
    S. K. Ratanathanawongs, J. C. Giddings, Anal. Chem.64, 6 (1992).PubMedGoogle Scholar
  26. [26]
    P. S. Williams, T. Koch, J. C. Giddings, Chem. Eng. Commun.111, 121 (1992).Google Scholar
  27. [27]
    J. C. Giddings, M. H. Moon, P. S. Williams, M. N. Myers, Anal. Chem.63, 1366 (1991).CrossRefPubMedGoogle Scholar
  28. [28]
    M. N. Myers, J. C. Giddings, Anal. Chem.54, 2284 (1982).CrossRefGoogle Scholar
  29. [29]
    G. Mie, Ann. Physik25, 377 (1908).Google Scholar
  30. [30]
    D. H. Melik, H. S. Fogler, J. Colloid Interface Sci.92, 161 (1983).CrossRefGoogle Scholar
  31. [31]
    E. Grushka, M. N. Myers, J. C. Giddings, Anal. Chem.42, 21 (1970).CrossRefGoogle Scholar
  32. [32]
    X. Chen, K.-G. Wahlund, J. C. Giddings, Anal. Chem.60, 362 (1988).Google Scholar
  33. [33]
    P. S. Williams, S. Lee, J. C. Giddings, Chem. Eng. Commun., in press.Google Scholar
  34. [34]
    J. B. Kennedy, A. M. Neville, “Basic Statistical Methods for Engineers and Scientists”, 2nd Ed., Harper and Row, New York, 1976, p. 239.Google Scholar

Copyright information

© Friedr. Vieweg & Sohn Verlagsgesellschaft mbH 1994

Authors and Affiliations

  • S. K. Ratanathanawongs
    • 1
  • J. C. Giddings
    • 1
  1. 1.Field-Flow Fractionation Research Center, Department of ChemistryUniversity of UtahSalt Lake CityUSA

Personalised recommendations