Skip to main content
Log in

The construction of cubature formulae for a family of integrals: A bifurcation problem

Die Konstruktion von Kubaturformeln für eine Familie von Integralen: ein Bifurkationsproblem

  • Published:
Computing Aims and scope Submit manuscript

Abstract

Cubature formulae of degree 11 with minimal numbers of knots for the integral

$$\int\limits_{ - 1}^1 { \int\limits_{ - 1}^1 {(1 - x^2 )^\alpha } } (1 - y^2 )^\alpha f(x,y) dxdy \alpha > - 1$$

which are invariant under rotation over an angle π/2 are determined by a system of 18 nonlinear equations in 18 unknowns.

We start with a known solution for this system for α=0. By varying α smoothly, the knots and weights of the cubature formula vary smoothly except in the singular solutions such as turning points and bifurcation points where new solutions branches arise. We use for this purpose the program AUTO. We obtain surprisingly many branches of cubature formulae.

Zusammenfassung

Kubaturformeln vom Grad 11 mit minimaler Knotenzahl für das Integral

$$\int\limits_{ - 1}^1 { \int\limits_{ - 1}^1 {(1 - x^2 )^\alpha } } (1 - y^2 )^\alpha f(x,y) dxdy \alpha > - 1,$$

die für Rotationen unter einem Winkel von π/2 invariant sind, werden durch ein nichtlineares Gleichungssystem mit 18 Gleichungen und 18 Unbekannten bestimmt.

Wir starten mit einer bekannten Lösung für α=0. Durch leichte Variation von α variieren die Knoten und Gewichte der Kubaturformel langsam, ausgenommen für singuläre Lösungen sowie Wendepunkte und Bifurkationspunkte, wo neue Lösungszweige erscheinen. Für dieses Verfahren benutzen wir das Programm AUTO. Wir erhalten überraschend viele Zweige von Kubaturformeln.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cools, R., Haegemans, A.: Construction of fully symmetric cubature formulae of degree 4k-3 for fully symmetric planar regions. J. Comp. Appl. Math.17, 153–158 (1987).

    Article  Google Scholar 

  2. Cools, R., Haegemans, A.: Another step forward in searching for cubature formulae with a minimal number of knots for the square. Computing40, 139–146 (1988).

    Article  Google Scholar 

  3. Doedel, E.: AUTO: A program for the automatic bifurcation analysis of autonomous systems. Cong. Num.30, 265–284 (1981). In: Proc. 10th Manitoba Conf, on Num. Math. and Comp. Winnipeg, Canada: Univ. of Manitoba 1980.

    Google Scholar 

  4. Doedel, E.: AUTO: Software for Continuation and Bifurcation Problems in Ordinary Differential Equations. Pasadena, California: Cal Tech 1986.

    Google Scholar 

  5. Dunavant, D. A.: Economical symmetrical quadrature rules for complete polynomials over a square domain. Int. J. Numer. Math. Eng.21, 1777–1784 (1986).

    Article  Google Scholar 

  6. Keller, H. B.: Numerical solution of bifurcation and nonlinear eigenvalue problems, pp. 359–384. In: Applications of Bifurcation Theory (Rabinowitz, P. H., ed.). New York: Academic Press 1977.

    Google Scholar 

  7. Mantel, F., Rabinowitz, P.: The application of integer programming to the computation of fully symmetric integration formulas in two and three dimensions. SIAM J. Numer. Anal.14, 391–425 (1977).

    Article  Google Scholar 

  8. Möller, H. M.: Kubaturformeln mit minimaler Knotenzahl. Numer. Math.25, 185–200 (1976).

    Article  Google Scholar 

  9. Möller, H. M.: On the construction of cubature formulae with few nodes using Gröbner basis. In: Numerical Integration (Keast, P., Fairweather, G., eds.). Reidel Publishing Company 1987.

  10. Rabinowitz, P., Richter, N.: Perfectly symmetric two-dimensional integration formulas with minimal numbers of points. Math. Comp.23, 765–779 (1969).

    Google Scholar 

  11. Rheinboldt, W. C., Burkardt, J. V.: A locally parametrized continuation process. ACM-TOMS9, 215–241 (1983).

    Article  Google Scholar 

  12. Morrow, C. R., Patterson, T. N. L.: Construction of algebraic cubature rules using polynomial ideal theory. SIAM J. Numer. Anal.15, 953–976 (1978).

    Article  Google Scholar 

  13. Schmid, H. J.: On the numerical solution of non-linear equations characterizing minimal cubature formulae. Computing24, 251–257 (1980).

    Google Scholar 

  14. Schmid, H. J.: Interpolatorische Kubaturformeln. Dissertationes Mathematicae CCXX, Warszawa 1983.

  15. Sobolev, S. L.: Formulas of mechanical cubature on the surface of a sphere (in Russ.). Sibirsk. Math. Z.3, 769–796 (1962).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Verlinden, P., Cools, R., Roose, D. et al. The construction of cubature formulae for a family of integrals: A bifurcation problem. Computing 40, 337–346 (1988). https://doi.org/10.1007/BF02276917

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02276917

AMS Subject Classifications

Key words

Navigation