Skip to main content
Log in

Deconvolution and quantitation of unresolved mixtures in liquid chromatographic-diode array detection using evolving factor analysis

  • Originals
  • Published:
Chromatographia Aims and scope Submit manuscript

Summary

A recently developed self-modeling curve resolution method based in different factor analysis techniques has been applied for the first time to the study of liquid-chromatography-diode array data under situation where the separation of two components is not achieved. Two applications are reported: the resolution and quantitation of a coeluted mixture of carbamate pesticides pirimicarb and 1-naphthol, and the estimation of the concentration profiles of the double peak obtained in the elution of the triazine metabolite chlorodiamino-s-triazine. Different methods of quantitation are compared, including Evolving Factor Analysis and Rank annihilation. Quantitation from the area of the elution profiles once the component spectra have been transformed for their area contribution to the signal, gives a relative composition for pirimicarb and naphthol pesticides which agrees with the known sample composition. In the case of the unknown triazine mixture, an approximate quantitation of the two peaks obtained for this metabolite is obtained by assuming equal signal contribution or equal maximum absorbance of the individual spectra of the two detected components.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Barceló, in “Liquid Chromatograph/Mass Spectrometry Applications in Agriculture, Pharmaceutical and Environemntal Chemistry”, ACS Symposium Series, N 420, Washington DC, 1990, pp 48–61.

  2. D. Barceló, G. Durand, R. J. Vreeken, G. J. Jong, U. A. Th. Brinkman, Anal. Chem.62, 1696 (1990).

    Google Scholar 

  3. G. Durand, D. Barceló, Toxicol. Environ. Chem.25, 1 (1989).

    Google Scholar 

  4. H. B. Böhm, J. Feltes, D. Volmer, K. Levsen, J. Chromatogr.478, 399 (1989).

    Google Scholar 

  5. D. T. Burns, F. Glockling, M. Harriot, The Analyst106, 921 (1981).

    Google Scholar 

  6. K. L. Jewett, F. E. Brinkman, J. Chromatogr. Sci.19, 563 (1981).

    Google Scholar 

  7. H. Engelhardt, Th. König, Chromatographia28, 341 (1989).

    Google Scholar 

  8. N. De Bertrand, G. Durand, D. Barceló, J. Environ. Sci. Health,A26, 575 (1991).

    Google Scholar 

  9. B. R. Kowalski, M. A. Sharaf Anal. Chem.54, 1291 (1982).

    Google Scholar 

  10. B. R. Kowalski, D. W. Osten, Anal. Chem.56, 991 (1984).

    Google Scholar 

  11. S. Ebel, W. Mueck, Chromatographia,26, 1039 (1988).

    Google Scholar 

  12. S. Ebel, W. Mueck, Chromatographia,25, 1075 (1988).

    Google Scholar 

  13. P. J. Naish, R. J. Lynch, R. J. T. Blaffert, Chromatographia,27, 343 (1989).

    Google Scholar 

  14. H. Engelhardt, M. Jungheim, Chromatographia29, 59 (1990).

    Google Scholar 

  15. A. Tijssen, H. A. H. Billiet, P. D. Schoenmakers, J. Chromatogr.122, 185 (1976).

    Google Scholar 

  16. S. Coppi, A. Betti, J. Chromatogr.472, 406 (1989).

    Google Scholar 

  17. B. M. G. Vandeginste, W. Derks, G. Kateman, Anal. Chim. Acta173, 253 (1985).

    Google Scholar 

  18. B. M. G. Vandeginste, G. Kateman, J. K. Strasters, H. A. H. Billiet, L. De Galan, Chromatographia,24, 127 (1987).

    Google Scholar 

  19. J. K. Strasters, H. A. H. Billiet, L. De Galan, B. G. M. Vandeginste, J. Chromatogr.489, 499 (1990).

    Google Scholar 

  20. H. Gampp, M. Maeder, Ch. J. Meyer, A. D. Zuberbühler, Talanta32, 1133 (1985);33, 943 (1986).

    Google Scholar 

  21. M. Maeder, A. Zilian, Chemometrics and Intelligent Laboratory Systems2, 205 (1988).

    Google Scholar 

  22. E. Sanchez, L. S. Ramos, B. R. Kowalski, J. Chromatogr.385, 151 (1987).

    Google Scholar 

  23. P. J. Gemperline, J. Chemometrics3, 549 (1989).

    Google Scholar 

  24. J. C. Hamilton, P. J. Gemperline, J. Chemometrics,4, 1 (1990).

    Google Scholar 

  25. M. F. Delaney, Anal. Chem.56, 261R (1984).

    Google Scholar 

  26. H. R. Keller, D. L. Massart, Anal. chim. Acta246, 379 (1991).

    Google Scholar 

  27. R. Tauler, E. Casassas, J. of Chemomet.3, 151 (1988).

    Google Scholar 

  28. R. Tauler, E. Casassas, Anal. Chim. Acta223, 257 (1989).

    Google Scholar 

  29. R. Tauler, A. Izquierdo-Ridorsa, E. Casassas Anal. Chim. Acta248, 447 (1991).

    Google Scholar 

  30. E. R. Malinowski, Anal. Chem.49, 606 (1977).

    Google Scholar 

  31. S. Wold, Technometrics20, 397 (1979).

    Google Scholar 

  32. H. Cartwright, J. Chemomet.1, 111 (1986).

    Google Scholar 

  33. E. R. Malinowski, D. G. Howery, Factor Analysis in Chemistry, Wiley, New York 1980.

    Google Scholar 

  34. C. H. Reinsch, Numerische Mathematik16, 451 (1971).

    Google Scholar 

  35. H. Gampp, M. Maeder, C. J. Meyer, A. D. Zuberbühler, Anal. Chim. Acta193, 287 (1987).

    Google Scholar 

  36. E. J. Karjalainen, in “Scientific Computing and Automation, Europe 1990”, Data Handling and Science and Technology Series, Elsevier, Amsterdam, 1990, vol. 6, p. 477.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tauler, R., Durand, G. & Barcelo, D. Deconvolution and quantitation of unresolved mixtures in liquid chromatographic-diode array detection using evolving factor analysis. Chromatographia 33, 244–254 (1992). https://doi.org/10.1007/BF02276190

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02276190

Key Words

Navigation