Chromatographia

, Volume 31, Issue 5–6, pp 293–296 | Cite as

Supercritical fluid chromatography of imidazole derivatives

  • D. Parlier
  • D. Thiébaut
  • M. Caude
  • R. Rosset
Article

Summary

The aim of this work was to use SFC to separate simple, slightly basic, imidazole derivatives which are used for the synthesis of more complex molecules with therapeutic properties. Control of their purity utilizes separation techniques and this paper shows what SFC can do in comparison with LC which requires derivatization before detection and with GC where peak tailing can be a problem. Our results concern the use of sub-critical mixtures of CO2 and polar modifiers because imidazole derivatives react with neat CO2, thus failing to elute from packed columns, and are only partially resolved on capillary columns with neat N2O. Therefore, separations with CO2-alcohol-amine-water mixtures on aminopropyl-bonded silica with UV detection are discussed. The resolution and sensitivity limits allow real sample analysis within a very short time.

Key Words

Supercritical fluid chromatography Imidazole derivatives CO2 with modifiers N2

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    P. Mourier, P. Sassiat, M. Caude, R. Rosset, J. Chromatogr.353, 61 (1986)Google Scholar
  2. [2]
    K.L. Maguire, R.B. Denyszyn, inC.M. White (Editor), “Modern Supercritical Fluid Chromatography”, Hüthig, Heidelberg, 1988, p. 45.Google Scholar
  3. [3]
    K. Grolimund, W.P. Jackson, M. Joppich, W. Nussbaum, K. Anton, H.M. Widmer, inD. Ishii, K. Jinno andP. Sandra (Editors), “Proceedings of the Seventh International Symposium on Capillary Chromatography, Gifu, Japan, May 11–14, 1986”, The University of Nagoya Press, Nagoya, 1986, p. 625.Google Scholar
  4. [4]
    J. Doehl, A. Farbrot, T. Greibrokk, B. Iversen, J. Chromatogr.392, 175 (1987)Google Scholar
  5. [5]
    F. David, P. Sandra, J. High Resolut. Chromatogr. Chromatogr. Commun.11, 897 (1988).Google Scholar
  6. [6]
    D. Upnmoor, G. Brunner, Chromatographia28, 449 (1989)Google Scholar
  7. [7]
    M. Ashraf-Khorassani, L.T. Taylor, inC.M. White (Editor), “Modern Supercritical Fluid Chromatography”, Hüthig, Heidelberg, 1988, p. 115.Google Scholar
  8. [8]
    J.G. Janssen, P.J. Schoenmakers, C.A. Cramers, J. High Resolut. Chromatogr.12, 645 (1989)Google Scholar
  9. [9]
    J.H. Phillip, R.J. Robey, J. Chromatogr.465, 177 (1989)Google Scholar
  10. [10]
    J.-L. Janicot, M. Caude, R. Rosset, J. Chromatogr.437, 351 (1988)Google Scholar
  11. [11]
    P. Moree-Testa, Y. Saint-Jalm, A. Testa, J. Chromatogr.290, 263 (1984)Google Scholar
  12. [12]
    C.R. Coan, A.D. King Jr., J. Amer. Chem. Soc.,93, 857 (1971)Google Scholar
  13. [13]
    Y. Hirata, inK.E. Markides andM.L. Lee, “SFCapplications, The 1988 Workshop on Supercritical Fluid Chromatography, Park City, UT, January 12–14, 1988.”Google Scholar
  14. [14]
    J.L. Veuthey, unpublished results.Google Scholar
  15. [15]
    J.C. Kuei, K. Markides, M.L. Lee, J. High Resolut. Chromatogr. Chromatogr. Commun.,10, 257 (1987)Google Scholar
  16. [16]
    J.-L. Janicot, M. Caude, R. Rosset, J.-L. Veuthey, J. Chromatogr.505, 247 (1990)Google Scholar
  17. [17]
    D. Parlier, DEA de Chimie Analytique, Université Pierre et Marie Curie, Paris, 1989.Google Scholar

Copyright information

© Friedr. Vieweg & Sohn Verlagsgesellschaft mbH 1991

Authors and Affiliations

  • D. Parlier
    • 1
  • D. Thiébaut
    • 1
  • M. Caude
    • 1
  • R. Rosset
    • 1
  1. 1.Laboratoire de Chimie Analytique de l'Ecole Supérieure de Physique et de Chimie Industrielles de Paris, 10ParisFrance

Personalised recommendations