Clinical Rheumatology

, Volume 1, Issue 2, pp 84–94 | Cite as

Phospholipases, eicosanoid production and inflammation

  • J. P. Famaey


The release of AA from its phospholipids pool, which is a basic initial stage in the biosynthesis of eicosanoids, is a complex mechanism. To understand it is very important for a better comprehension of the inflammatory process and its treatment. In the near future drugs such as synthetic macrocortin, lipomodulin or others which could act on these very early stages of inflammation might be produced by the drug industry for the benefit of alle rheumatic patients.


Public Health Rheumatic Patient Inflammatory Process Eicosanoid Complex Mechanism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Corey, E.J., Niwa, H., Falck, J.R., Mioskowski, C., Arai, Y., Marfat, A. Recent studies of the chemical synthesis of eicosanoids. In: “Advances in Prostaglandins and Thromboxane Research” Editor: Samuelsson, B., Ramwell, P.W., Paoletti, R. Raven Press, New-York, 1980. 6 pp. 19–25.Google Scholar
  2. 2.
    Riley, J.F., West G.B. The occurrence of histamine in mast cells. In: “Handbook of experimental Pharmacology” Editor: Rocha e Silva. Springer Verlag, Berlin, Heidelberg, New-York, 1966. Vol. 18 part 1, pp. 116–135.Google Scholar
  3. 3.
    DE Robertis, E., Bennett, H.S. Some features of the submicroscopic morphology of synapses in frog and earthworm. J. Biophys. Biochem. Cytol., 1955. 1, 47–58.Google Scholar
  4. 4.
    Flower, R.J. Prostaglandins and Related Compounds. In: “Handbook of experimental Pharmacology. Inflammation” Editor: Vane, J.R., Ferreira, S.H., Springer Verlag, Berlin, Heidelberg, New-York, 1978. Vol. 50, part 1, pp. 374–422.Google Scholar
  5. 5.
    Flower, R.J., Blackwell, G.J. The importance of phospholipase A2 in prostaglandin biosynthesis Biochem. Pharmacol., 1975, 25, 285–291.Google Scholar
  6. 6.
    Lans, W.E.M., Samuelsson, B. Phospholipid precursors of prastaglandins. Biochim. Biophys. Acta, 1968, 164, 426–429.Google Scholar
  7. 7.
    Bell, R.M., Coleman, R.A. Enzymes of glycerophospholipid synthesis in enkaryotes. Annu. Rev. Biochem. 1980, 49, 459–487.Google Scholar
  8. 8.
    Van Den Bosch, H. Phosphoglyceride metabolism. Annu. Rev. Biochem., 1974, 43, 243–277.Google Scholar
  9. 9.
    Kuehl, F.A., Jr. Prostaglandins, cyclic nucleotides and cell function. Prostaglandins, 1974, 5, 325–340.Google Scholar
  10. 10.
    Kaplan L., Weiss J., Elsbach, P. Low concentrations of indomethacin inhibit phospholipase A2 of rabbit polymorphonuclear leukocytes. Proc. Natl. Acad. Sci., USA, 1978, 75, 2955–2958.Google Scholar
  11. 11.
    Desnuelle, P. Pancreatic lipase. Adv. Enzymol, 1961, 23, 129–161.Google Scholar
  12. 12.
    Van Den Bosch, H. Intracellular phospholipases A. Biochim. Biophys. Acta, 1980, 604, 191–246.Google Scholar
  13. 13.
    Verheij, H.M., Slotboom, A.J., De Haas, G.H. Structure and function of phospholipase A2. Rev. Physiol. Biochem. Pharmacol., 1981, 91, 91–203.Google Scholar
  14. 14.
    Rittenhouse-Simmons, S., Deykin, D. Release and metabolism of arachidonate in human platelets. In: “Platelets in Biology and Pathology 2” Editor Gordon, J.L. Elsevier-North Holland, Amsterdam, New-York, Oxford, 1981. pp. 349–372.Google Scholar
  15. 15.
    Smith, J.P., Silver, M.J. Phospholipase A1 of human blood platelets. Biochem. J., 1973, 131, 615–618.Google Scholar
  16. 16.
    Kannagi, R., Koizumi, K. Phospholipid-Deacylating enzymes of rabbit platelets. Arch. Biochem. Biophys., 1979, 196, 534–542.Google Scholar
  17. 17.
    Trugnan, G., Bereziat, G., Manier, M.C., Polonovski, J. Phospholipase activities in subcellular fractions of human platelets. Biochim. Biophys. Acta, 1979, 573, 61–72.Google Scholar
  18. 18.
    Nishijima, M., Nakaike, S., Tamori, Y., Nojima, S. Detergent-Resistant phospholipase A of Escherichia Coli K-12. Purification and Properties. Eur. J. Biochem., 1977, 73, 115–124.Google Scholar
  19. 19.
    Nishijima, M., Akamatsu, J., Nojima, S. Purification and properties of a membrane-bound phospholipase A1 from mycobacterium phlei. J. Biol. Chem., 1974, 249, 5658–5667.Google Scholar
  20. 20.
    Kawasaki, N., Sugatani, J., Saito, K. Studies on a phospholipase B from Penicillium notatum. J. Biochem., 1975. 77, 1233–1244.Google Scholar
  21. 21.
    Van Den Bosch, H., Aarsman, A.J., Van Deenen, L.L.M. Isolation and properties of a phospholipase A1 activity from beef pancreas. Biochim. Biophys. Acta. 1974, 348, 197–209.Google Scholar
  22. 22.
    Long, Odavic, R., Sargent, E.J. The action of cabbage-leaf phospholipase D upon lysolecithin. Biqchem. J., 1967, 102, 216–220.Google Scholar
  23. 23.
    Saito, M., Kanfer, J. Phosphatidohydrolase activity in a solubilized preparation from rat brain particulate fractions. Arch. Biochem. Biophys. 1975, 169, 318–323.Google Scholar
  24. 24.
    Kater, L.A., Goetzl, E.J., Austen, K.F. Isolation of human eosinophil phospholipase D. J. Clin. Invest., 1976, 57, 1173–1180.Google Scholar
  25. 25.
    Wasserman, S.I., Goetzl, E.J., Austen, K.F. Inactivation of slow reacting substance of anaphylaxis (SRS-A) by arylsulfatases. J. Immunol., 1975, 114, 645–649.Google Scholar
  26. 26.
    Zeiger, R., Yurdin, D., Colten, H. Histamine metabolism II Cellular and subcellular localization of the catabolic enzymes, histaminase and histamine methyltransferase in human leukocytes. J. Allergy Clin. Immunol., 1976, 58, 172–179.Google Scholar
  27. 27.
    De Haas, G.H., Postema, N.M., Nieuwenhuizen, W., Van Deenen, L.L.M. Purification and properties of an anionic zymogen of phospholipase A from porcine pancreas. Biochim. Biophys. Acta, 1968, 159, 118–129.Google Scholar
  28. 28.
    Paysant, M., Bitran, M., Etienne, J., Polonovski, J. Phospholipase A du plasma sanguin de rat. Ci-nétique et Propriété. Existences d'un précurseur inactif. Bull. Soc. Chim. Biol., 1969, 51, 863–873.Google Scholar
  29. 29.
    Picket, W.C., Jesse, R.L., Cohen, P. Trypsin induced phospholipase activity in human platelets. Biochem., J. 1976, 160, 405–408.Google Scholar
  30. 30.
    Hong, S.L., Polsky-Cynkin, R., Levine, L. Stimulation of Prostaglandin Biosynthesis by vasoactive Substances in Methylcholantrene-transformed Mouse BALB/3T3. J. Biol. Chem., 1976, 251, 776–780.Google Scholar
  31. 31.
    Krag, S.S., Lennarz, W.J. Purification and Characterization of an Inhibitor of the Phospholipase A1 in Bacillus subtilis. J. Biol, Chem., 1975, 250, 2813–2822.Google Scholar
  32. 32.
    Flower, R.J. Drugs which inhibit prostaglandin biosynthesis. Pharmacol. Rev., 1974, 26, 33–67.Google Scholar
  33. 33.
    Gryglewski, R.J., Panczenko, B., Korbut, R., Grodzinska, L., Ocetkiewicz, A. Corticoasteroids inhibit prostaglandin release from perfused mesenteric blood vessels of rabbit and from perfused lungs of sensitized guinea-pig. Prostaglandins, 1975, 10, 343–355.Google Scholar
  34. 34.
    Hong, S.L., Levine, L. Inhibition of arachidonic acid release from cells as the biochemical action of anti-inflammatory corticosteroids. Proc. Natl. Acad. Sci, USA, 1976. 73, 1730–1734.Google Scholar
  35. 35.
    Blackwell, G.J., Flower, R.J., Nijkamp, F.P., Vane, J.R. Phospholipase A2 activity of guinea-pig isolated perfused lungs: stimulation and inhibition by anti-inflammatory steroids. Br. J. Pharmacol, 1978, 62, 79–89.Google Scholar
  36. 36.
    Danon, A., Assouline, G. Inhibition of prostaglandin biosynthesis by corticosteroids requires RNA and protein synthesis. Nature, 1978, 273, 552–554.Google Scholar
  37. 37.
    Flower, R.J., Blackwell, G.J. Anti-inflammatory steroids induce biosynthesis of a phospholipase A2 inhibitors which prevents prostaglandin generation. Nature, 1979, 278, 456–459.Google Scholar
  38. 38.
    Carnuccio, R., Dirosa, M., Persico, P. Hydrocortisone-induced inhibitor of prostaglandin biosynthesis in rat leucocytes. Br. J. Pharmacol., 1980, 68, 14–16.Google Scholar
  39. 39.
    Blackwell, G.J., Carnuccio, R., Dirosa, M., Flower, R.J., Parente, L., Persico, P. Macrocortin: a polypeptide causing the antiphospholipase effect of glucocorticoids. Nature, 1980, 287, 147–149.Google Scholar
  40. 40.
    Flower, R.J. Glucocorticoids, phospholipase A2 and inflammation. Trends Pharmacol. Sci., 1981, 2, 186–189.Google Scholar
  41. 41.
    Hirata, Schiffmann, E., Venkatasubramanian, K., Solomon, D., Axelrod, J. A phospholipase A2 inhibitory protein in rabbit neutrophils induced by glucocorticoids. Proc. Natl. Acad. Sci., USA, 1980, 77, 2533–2536.Google Scholar
  42. 42.
    Hirata, F., Delcarmine, R., Nelson, C.A., Axelrod, J., Schiffmann, E., Warabi, A., De Blas, A.L., Nirenberg, M., Manganiello, V., Vaughan, M., Kumagai, S., Green, I., Decker, J.L., Steinberg, A.D. Presence of autoantibody for phospholipase inhibitory protein, lipomodulin, in patients with rheumatic diseases. Proc. Natl. Acad. Sci, USA, 1981, 78, 3190–3194.Google Scholar
  43. 43.
    Hirata, F. The Regulation of lipomodulin a phospholipase inhibitory protein in rabbit Neutrophils by Phosphorylation. J. Biol. Chem., 1981, 256, 7730–7733.Google Scholar
  44. 44.
    Nijkamp, F.P., Flower, R.J., Moncada, S., Vane, J.R. Partical purification of RCS-RF (rabbit aorta contracting substance releasing factor) and inhibition of its action by anti-inflammatory steroids. Nature, 1976, 263, 479–482.Google Scholar
  45. 45.
    Pong, S.S., Hong, S.L., Levine, L. Prostaglandin production by methylcholantrene-transformed Mouse BALB/3T3. J. Biol. Chem., 1977, 252, 1408–1413.Google Scholar
  46. 46.
    Lapetina, E.G., Billah, M.M., Cuatrecasas, P. The Phosphatidylnositol cycle and the regulation of arachidonic acid production. Nature, 1981, 292, 367–369.Google Scholar
  47. 47.
    Serhan, C., Anderson, P., Goodman, E., Dunham, P., Weissmann, G. Phosphatidate and oxidised fatty acids are calcium ionophores. J. Biol. Chem., 1981, 256, 2736–2741.Google Scholar
  48. 48.
    Parker, C.W., Kelly, J.P., Falkenheim, S.F., Huber, M.G. Release of Arachidonic acid from human lymphocytes in response to mitogenic lectins. J. Exp. Med., 1979, 149, 1487–1503.Google Scholar
  49. 49.
    Kennedy, D.A., Sullivan, T.J., Sylwester, T., Parker, C.W. Diacylglycerol metabolism in mast cells: a potential role in membrane fusion and arachidonic release. J.Exp. Med., 1979, 150, 1039–1044.Google Scholar
  50. 50.
    Hokin, M.R., Hokin, L.E. Effects of acetylcholine on phospholipids in pancreas. J. Biol. Chem., 1954, 209, 549–558.Google Scholar
  51. 51.
    Berridge, M.J. Receptors and calcium signalling. Trends Pharmacol. Sci., 1980, 1, 419–424.Google Scholar
  52. 52.
    Michell, R.H., Kirk, C.J. The unknown meaning of receptor-stimulated inositol lipid metabolism. Trends Pharmacol. Sci., 1982, 3, 140–141.Google Scholar
  53. 53.
    Broekman, M.J., Ward, J.W., Marcus, A.J. Fatty acid composition of phosphatidylinositol and phos-phatidic acid in Stimulated platelets. J. Biol. Chem., 1981, 25, 8271–8274.Google Scholar
  54. 54.
    Lapetina, E.G. Regulation of arachidonic acid production: role of phospholipases C and A2. Trends Pharmacol. Sci., 1982, 3, 115–118.Google Scholar
  55. 55.
    Michell, R.H. Inositol Phospholipids and cell surface receptor function. Biochim. Biophys. Acta, 1975, 415, 81–147.Google Scholar
  56. 56.
    Michell, R.H., Kirk, C.J. Why is phosphatidylinositol degraded in response to stimulation of certain receptors? Trends Pharmacol. Sci., 1981, 2, 86–89.Google Scholar
  57. 57.
    Berridge, M.J., Fain, J.N. Inhibition of Phosphati-dylinositol synthesis and the inactivation of calcium entry after prolonged Exposure of the Blowfly salivary gland to 5-Hydroxytryptamine. Biochem. J., 1979, 178, 59–69.Google Scholar
  58. 58.
    Tyson, C.A., Van De Zande, H., Green, D.E. Phospholipids as inonophores. J. Biol. Chem., 1976, 251, 1326–1332.Google Scholar
  59. 59.
    Salmon, D.M., Honeyman, T.W. Proposed mechanism of cholinergic action in smooth muscle. Nature, 1980, 284, 344–345.Google Scholar
  60. 60.
    Putney, J.W., Weiss, S.J., Van De Walle, C., Haddas, R.A. Is phosphatidic acid a calcium ionophore under neurohumoral control? Nature, 1980, 284, 345–347.Google Scholar
  61. 61.
    Gerrard, J.M., Peterson, D.A., White, J.G. Calcium mobilization. In: “Platelets in Biology and Pathology 2” Editor: Gordon, J.L. Elsevier-North Holland, Amsterdam, New-York, Oxford, 1981, pp. 407–436.Google Scholar
  62. 62.
    Downes, C.P., Michell, R.H. The Control by Ca2+ of the polyphosphoinositide phosphodiesterase and the Ca2+ — pump ATPase in human erythrocyte. Biochem. J., 1982, 202, 53–58.Google Scholar
  63. 63.
    Bell, R.L., Kennedy, D.A., Stanford, N., Majerus, P.W. Diglyceride lipase: A pathway for arachidonate release from human platelets. Proc. Natl. Acad. Sci. USA, 1979, 76, 3238–3241.Google Scholar
  64. 64.
    Okazaki, T., Sagawa, W., Okita, J.R., Bleasdale, J.F., MacDonald, P.C., Johnston, J.M. Diacylglycerol Metabolism and Arachidonic Acid Release in Human Fetal Membranes and Decidua Vera. J. Biol, Chem. 1981, 256, 7316–7321.Google Scholar
  65. 65.
    Billah, M.M., Lapetina, E.C., Cuatrecasas, P. Phosphatidylinositol-specific Phospholipase-C of Platelets: Association with 1,2-Diacylglycerol-kinase and Inhibition by cyclic-AMP. Biochem. Biophys. Res. Commun, 1979, 90, 92–98.Google Scholar
  66. 66.
    Lapetina, E.G., Cuatrecasas, P. Stimulation of phosphatidic acid production in platelets precedes the formation of arachidonate and parallels the release of serotonin. Biochim. Biophys. Acta, 1979, 573, 394–402.Google Scholar
  67. 67.
    Broekman, M.J., Ward, J.W., Marcus, A.J. Phos-pholipid metabolism in stimulated human platelets. Changes in Phosphatidylinositol, Phosphatidic Acid, and lysophospholipids. J. Clin. Invest., 1980, 66, 275–283.Google Scholar
  68. 68.
    Billah, M.M., Lapetina, E.G., Cuatrecasas, P. Phospholipase A2 Activity specific for Phosphatidic Acid. J. Biol. Chem., 1981, 256, 5399–5403.Google Scholar
  69. 69.
    Lapetina, E.G., Billah, M.M., Cuatrecasas, P. The initial action of thrombin on Platelets-Conversion of Phosphatidylinositol to phosphatidic acid preceding the production of arachidonic acid. J. Biol. Chem., 1981, 256, 5037–5040.Google Scholar
  70. 70.
    Billah, M.M., Lapetina, E.G., Cuatrecasas, P. Phospholipase A2 and Phospholipase C Activities of Platelets. Differential Substrate Specifity, Ca2+ requirement, pH dependence and cellular localization. J. Biol. Chem., 1980, 255, 10227–10231.Google Scholar
  71. 71.
    Agranoff, B.W., Gradley, R.M., Grady, R.O. The enzymatic synthesis of inositol phosphatide. J. Biol. Chem., 1958, 233, 1077–1083.Google Scholar
  72. 72.
    Bleasdale, J.E., Wallis, P., Mac Donald, P.C., Johnston, J.M. Characterization of the forward and reserve reactions catalyzed by CDP-diacylglycerol: inositol transferase in rabbit lung tissue. Biochim. Biophys. Acta, 1979, 575, 135–147.Google Scholar
  73. 73.
    Mac Murray, W.C., Magee, W.L. Phospholipid Metabolism. Annu. Rev. Biochem., 1972, 41, 129–160.Google Scholar
  74. 74.
    Kroner, E.E., Peskar, B.A., Fischer, H., Ferber, E. Control of Arachidonic Acid Accumulation in Bone Marrow derived Macrophages by Acyltrans-ferases. J. Biol. Chem., 1981, 256, 3690–3697.Google Scholar
  75. 75.
    Reed, P.W. Effects of the Divalent Cation Ionophore A 2387 on Potassium Permeability of Rat Erythrocytes. J. Biol. Chem., 1976, 251, 3489–3494.Google Scholar
  76. 76.
    Irvine, R.F., Dawson, R.M.C. Transfer of arachidonic acid between phospholipids in rat liver microsomes. Biochem. Biophys. Res. Commun., 1979, 91, 1349–1405.Google Scholar
  77. 77.
    Hirata, F., Axelrod, J. Phospholipid Methylation and Biological Signal Transmission. Science, 1980, 209, 1082–1090.Google Scholar
  78. 78.
    Hirata, F., Axelrod, J. Enzymatic synthesis and rapid translocation of phosphatidylcholine by two methyltransferases in erythrocyte membranes. Proc. Natl. Acad. Sci. USA, 1978, 75, 2348–2352.Google Scholar
  79. 79.
    Hirata, F., Axelrod, J. Enzymatic Methylation of phosphatidylethanolamine increases erythrocyte membrane fluidity. Nature, 1978, 275, 219–220.Google Scholar
  80. 80.
    Hirata, F., Strittmatter, W.J., Axelrod, J. ß-Adrenergic receptor agonists increase phospholipid methylation, membrane fluidity and ß-adrenergic receptor-adenylate cyclase coupling. Proc. Natl. Acad. Sci. USA, 1979, 76, 368–372.Google Scholar
  81. 81.
    Ishizaka, T., Hirata, F., Sterk, A.R., Ishizaka, K., Axelrod, J. Bridging of IgE receptors activates phospholipid methylation and adenylate cyclase in mast cell plasma membranes. Proc. Natl. Acad. Sci. USA, 1981, 78, 6812–6816.Google Scholar
  82. 82.
    Hirata, F., Toyoshima, S., Axelrod, J., Waxdal, M.J. Phospholipid methylation: A biochemical signal modulating lymphocyte mitogenesis. Proc. Natl. Acad. Sci. USA, 1980. 77, 862–865.Google Scholar
  83. 83.
    Hirata, F., Corcoran, B.A., Venkatasubramanian, K., Schiffmann, E., Axelrod, J. Chemoattractants stimulate degradation of methylated phospholipids and release of arachidonic acid in rabbit leukocytes. Proc. Natl. Acad. Sci. USA, 1979, 76, 2640–2643.Google Scholar
  84. 84.
    Hirata, F., Axelrod, J., Crews, F.T. Concanavalin A stimulates phospholipid methylation and phos-phatidylserine decarboxylation in rat mast cells. Proc. Natl. Acad. Sci. USA, 1979, 76, 4813–4816.Google Scholar
  85. 85.
    Henson, P.M. Mechanisms of mediator release from inflammatory cells. In: “Mediators of In-flammation” Editor Weissmann, G., Plenum Press, New-York, London, 1974. pp. 9–50.Google Scholar
  86. 86.
    Walenga, R., Vanderhoek, J.Y., Feinstein, M.B. Serine Esterase Inhibitors Block Stimulus induced Mobilization of Arachidonic Acid and Phosphati-dylinositide-specific phospholipase C Activity in Platelets. J. Biol. Chem., 1980, 255, 6024–6027.Google Scholar
  87. 87.
    Lewis, R.A., Austen, K.F. Mediation of local homeostasis and inflammation by leukotrienes and other mast cell-dependent compounds. Nature, 1981, 293, 103–108.Google Scholar
  88. 88.
    Authi, K.S., Traynor, J.R. Effect of antimalarial drugs on phospholipase A2. Br. J. Pharmac., 1979, 66, 496 P.Google Scholar
  89. 89.
    Walenga, R.W., Opas, E.E., Feinstein, M.B. Differential effects of Calmodulin Antagonists on phospholipase A2 and C in Thrombin-stimulated Platelets. J. Biol. Chem., 1981, 256, 12523–12528.Google Scholar
  90. 90.
    Volpi, M., Sha'afi, R.I., Epstein, P.M., Andrenyak, D.M., Feinstein, M.B. Local anesthetics, mepacrine and propranolol are atagonists of calmodulin. Proc. Natl. Acad. Sci. USA, 1981, 78, 795–799.Google Scholar
  91. 91.
    Kaplan, L., Weiss, J., Elsbach, P. Low Concentrations of indomethacin inhibit phospholipase A2 of rabbit polymorphonuclear leukocytes. Proc. Natl. Acad. Sci. USA, 1978, 75, 2955–2958.Google Scholar
  92. 92.
    Lipsky, J.J., Lietman P.S. Aminoglycoside Inhibition of a renal phosphatidylinositol phospholipase C. J. Pharmacol. Exp. Ther., 1982, 220, 287–292.Google Scholar

Copyright information

© Springer-Verlag 1982

Authors and Affiliations

  • J. P. Famaey
    • 1
  1. 1.Service de Rhumatologie et Médecine PhysiqueUniversity of BrusselsBrusselsBelgium

Personalised recommendations