Structural Chemistry

, Volume 7, Issue 1, pp 1–15 | Cite as

Raman and infrared spectra, conformational stability, and ab initio calculations oftrans-1-fluoro-2-butene

  • D. T. Durig
  • W. A. Herrebout
  • Howard Z. Qiu
  • Mengzhang Zhen
  • J. R. Durig


The Raman (3200 to 10 cm−1) and infrared (3200 to 20 cm−1) spectra of gaseous and solidtrans-1-fluoro-2-butene,trans-CH3HC=CHCH2F, have been recorded. Additionally, the Raman spectrum of the liquid with qualitative depolarization data has also been obtained. Variable temperature studies have been carried out with the sample dissolved in xenon. These spectral data have been interpreted on the basis that the molecule exists in the fluid phases as a mixture of the synclinal (fluorine atom orientedcis to the double bond) and anticlinal (gauche) conformations and the synclinal conformer is more stable by 135±30 cm−1 (377±106 cal/mol). There was a considerable scatter of the data but in the liquid state the anticlinal conformer is more stable and the only comformer present in the solid state. Ab initio gradient calculations employing the RHF/3-21G, RHF/6-31G*, and MP2/6-31G* basis sets predict the synclinal conformer to be more stable by 800, 86, and 150 cm−1, respectively. The fundamental asymmetric torsional mode for the synclinal comformer is observed at 123.9 cm−1 with three excited states falling to lower frequency. The corresponding mode for the anticlinal conformer is observed as a broad nondescript band centered at about 93 cm−1. Utilizing these data along with theδH and dihedral angle for the anticlinal conformer the potential function for the conformational interchange has been calculated. The determined coefficients areV1=−246±5,V2=371±3,V3=836±22,V4=86±3, andV6=85±8 cm−1. Complete equilibrium geometries for both conformers have been determined with the RHF/3-21G, RHF/6-31G*, and MP2/6-31G* basis sets. A normal coordinate analysis utilizing the harmonic force constants obtained with the MP2/6-31G* basis set has been carried out for both conformers. The results are discussed and compared with the corresponding quantities obtained for some similar molecules.

Key words

Raman infrared conformation ab initio trans-1-fluoro-2-butene 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Durig, J. R.; Zhen, M., Little, T. S.J. Chem Phys. 1984,81, 4259.Google Scholar
  2. 2.
    Durig, J. R.; Zhen, M.; Heusel, H. S.; Joseph, P. J.; Groner, P.; Little, T. S.J. Phys. Chem. 1985,89, 2877.Google Scholar
  3. 3.
    Durig, J. R.; Geyer, T. J.; Little, T. S.; Durig, D. T.J. Mol. Struct. 1988,172, 165.Google Scholar
  4. 4.
    Durig, D. T.; Little, T. S.; Costner, T. G.; During, J. R.J. Mol. Struct. 1992,266, 277.Google Scholar
  5. 5.
    Durig, J. R.; Durig, D. T.; Jailian, M. R.; Zhen, M.; Little, T. S.J. Mol. Struct. 1989,194, 259.Google Scholar
  6. 6.
    Durig, D. T.; van der Veken, B. J.; Durig, J. R., to be published.Google Scholar
  7. 7.
    Durig, J. R.; Jalilian, M. R.J. Phys. Chem. 1980,84, 3543.Google Scholar
  8. 8.
    Durig, J. R.; Tang Q.; Little, T. S.J. Mol. Struct. 1992,269, 257.Google Scholar
  9. 9.
    Durig, J. R.; Tang Q.; Little, T. S.J. Raman Spectrosc. 1992,23, 653.Google Scholar
  10. 10.
    Durig, J. R.; Qiu, H. Z.; Durig, D. T.; Zhen, M.; Little, T. S.J. Phys. Chem. 1991,95, 2745.Google Scholar
  11. 11.
    Durig, D. T.; Little, T. S.; and Durig, J. R.Spectrochim. Acta 1993,49A, 1873.Google Scholar
  12. 12.
    Durig, J. R.; Costner, T. G.; Wang, A.; Frierson, G.; Durig, D. T.J. Mol. Struct. 1993,300, 257.Google Scholar
  13. 13.
    Durig, J. R.; Costner, T. G.; Goodson, B.J. Raman Spectrosc. 1993,24, 709.Google Scholar
  14. 14.
    Durig, D. T.; Guirgis, G. A.; Durig, J. R.Struct. Chem. 1992,3, 347.Google Scholar
  15. 15.
    Durig, D. T.; Guirgis, G. A.; Durig, J. R.J. Raman Spectrosc. 1992,23, 37.Google Scholar
  16. 16.
    Durig, D. T.; Qiu, H. Z.; Zhen, M.; Little, T. S.; Durig, J. R.Spectrochim. Acta 1994,50A, 583.Google Scholar
  17. 17.
    Hoffman, F. W.J. Org. Chem. 1975,40, 574.Google Scholar
  18. 18.
    Miller, F. A.; Harney, B. M.Appl. Spectrosc. 1970,24, 291.Google Scholar
  19. 19.
    Gaussian-90, Frisch, M. J.; Head-Gordon, M.; Trucks, G. W.; Foresman, J. B.; Schelgel, H. B.; Raghavachari, K.; Robb, M. A.; Binkley, J. S.; Gonzalez, C.; DeFrees, D. J.; Fox, D. J.; Whiteside, R. A.; Seeger, R.; Melius, C. F.; Baker, J.; Martin, R. L.; Kahn, L. R.; Stewart, J. J. P.; Topiol, S.; and Pople, J. A. Gaussian, Inc., Pittsburgh, PA, 1990.Google Scholar
  20. 20.
    Pulay, P.Mol. Phys. 1969,17, 197.Google Scholar
  21. 21.
    Fogarasi, G.; Pulay, P. InVibrational Spectra and Structure; Durig, J. R., Ed.; Elsevier: Amsterdam, 1985; Vol. 14, pp 125–219.Google Scholar
  22. 22.
    Wilson, E. B.; Decius, J. C.; Cross, P.C.Molecular Vibrations; McGraw-Hill: New York, 1955.Google Scholar
  23. 23.
    Schachtschneider, H. J.Vibrational Analysis of Polyatomic Molecules, Parts V and VI, Technical Report Nos. 231 and 57, Shell Development Co., Houston, TX, 1964 and 1965.Google Scholar

Copyright information

© Plenum Publishing Corporation 1996

Authors and Affiliations

  • D. T. Durig
    • 3
  • W. A. Herrebout
    • 1
  • Howard Z. Qiu
    • 1
  • Mengzhang Zhen
    • 1
  • J. R. Durig
    • 2
  1. 1.Department of Chemistry and BiochemistryUniversity of South CarolinaColumbia
  2. 2.Department of ChemistryUniversity of Missouri-Kansas CityKansas City
  3. 3.Departments of Chemistry and PhysicsThe University of the SouthSewanee

Personalised recommendations