Advertisement

Hyperfine Interactions

, Volume 99, Issue 1, pp 389–399 | Cite as

Mössbauer and X-ray diffraction studies of mechanically alloyed Fe-Al

  • Elżbieta Jartych
  • Jan Krzysztof Zurawicz
  • Dariusz Oleszak
  • Jan Sarzyński
  • Mieczysław Bundzyński
Section 7 Electron-Ion Recombination

Abstract

Powder samples of Fe25Al75 were prepared by the mechanical alloying method. Mössbauer effect, X-ray diffraction and DSC measurements indicate that Fe and Al crystalline powder transform into Fe-Al amorphous powder with increasing milling time. The X-ray diffraction patterns of the milled Fe25Al75 do not clearly show a sign of the existence of the intermetallic phases or Fe-Al solid solution. However, Mössbauer measurements reveal two sites with hyperfine magnetic fields 30.2 and 26.0 T. These sites form locally during the milling process and then they disappear.

Keywords

Magnetic Field Solid Solution Milling Powder Sample Diffraction Study 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    J.S. Benjamin, Metall. Trans. 1 (1970) 2943.Google Scholar
  2. [2]
    J. Kuyama, H. Inui, S. Imaoka, S. Nasu, K.N. Ishihara and P.H. Shingu, Jpn. J. Appl. Phys. 30 5A (1991) L854.Google Scholar
  3. [3]
    J. Takeuchi, H. Katsube, I. Hiromitsu and T. Ito, J. Magn. Magn. Mater. 140–144 (1995) 303.Google Scholar
  4. [4]
    B.H. Meeves and G.S. Collins, Hyp. Int. 92 (1994) 955.Google Scholar
  5. [5]
    E. Kuzmann, A. Vertes, A. Griger and V. Stefaniay, Hyp. Int. 92 (1994) 943.Google Scholar
  6. [6]
    M.A. Morris and D.G. Morris, Mater. Sci. Forum 88–90 (1992) 529.Google Scholar
  7. [7]
    D. Oleszak and P.H. Shingu, Mater. Sci. Eng. A181/A182 (1994) 1217.Google Scholar
  8. [8]
    T.B. Massalski, in:Binary Alloy Phase Diagrams (ASM, Metals Park, OH, USA, 1990) p. 148.Google Scholar
  9. [9]
    S.A. Makhlouf, M. Shiga and K. Sumiyama, J. Phys. Soc. Jpn. 60 (1991) 3537.Google Scholar
  10. [10]
    M.B. Stearns, Phys. Rev. 147 (1966) 439.Google Scholar
  11. [11]
    G.P. Huffman and R.M. Fisher, J. Appl. Phys. 38 (1967) 735.Google Scholar
  12. [12]
    G.A. Perez Alcazar and E. Galvao da Silva, J. Phys. F: Met. Phys. 17 (1987) 2323.Google Scholar
  13. [13]
    G. Wang, D. Zhang, H. Chen, B. Lin, W. Wang and Y. Dong, Phys. Lett. A 155 (1991) 57.Google Scholar
  14. [14]
    P. Schaaf, G. Rixecker, E. Yang, C.N.J. Wagner and U. Gonser, Hyp. Int. 94 (1994) 2239.Google Scholar
  15. [15]
    J. Hesse and A. Rübartsch, J. Phys. E7 (1974) 526.Google Scholar
  16. [16]
    M.A.Z. Vasconcellos, S.R. Teixeira, P.H. Dionisio, W.H. Schreiner and I.J.R. Baumvol, Nucl. Instrum. Meth. A280 (1989) 557.Google Scholar

Copyright information

© J.C. Baltzer AG, Science Publishers 1996

Authors and Affiliations

  • Elżbieta Jartych
    • 1
  • Jan Krzysztof Zurawicz
    • 1
  • Dariusz Oleszak
    • 2
  • Jan Sarzyński
    • 3
  • Mieczysław Bundzyński
    • 3
  1. 1.Department of PhysicsTechnical University of LublinLublinPoland
  2. 2.Department of Materials Science and EngineeringWarsaw University of TechnologyWarsawPoland
  3. 3.Institute of PhysicsUniversity of Maria Curie-SklodowskaLublinPoland

Personalised recommendations