Skip to main content
Log in

Production and decay of highly-charged fullerene ions

  • Published:
Hyperfine Interactions Aims and scope Submit manuscript

Abstract

Highly-charged fullerene ions C z+60 and C z+70 with charge states up to z=7 have been produced in an electron impact ion source of a two sector field mass spectrometer by using ion source operating conditions similar to those used in EBIT sources. The stability of these ions was investigated quantitatively in the two field free regions of the mass spectrometer. It was found that besides C2 evaporation the dominant fission process for ions with charges larger than +2 is the loss of a charged C +2 unit via a super-asymmetric charge separation reaction C z+60 → C (z−1)+58 +C +2 and C z+70 → C (z−1)+68 +C +2 , respectively. The most important finding from these studies is that this super-asymmetric dissociation reaction proceeds via a three stage reaction sequence involving an electron transfer reaction at the second stage between a receding C2 unit and the remaining highly-charged fullerene cage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Müller, Comm. At. Mol. Phys. 27 (1991) 1.

    Google Scholar 

  2. O. Echt and T.D. Märk,Clusters of Atoms and Molecules II, ed. H. Haberland (Springer, Berlin, 1995) chap. 2.7.

    Google Scholar 

  3. I. Cornides, G. Horvath and K. Vekey (eds.),Advances in Mass Spectrometry, Vol. 13 (Wiley, Chichester, 1995).

    Google Scholar 

  4. A.C. Hurley, J. Mol. Spectrosc. 9 (1962) 18.

    Google Scholar 

  5. R.W. Wetmore, R.J. LeRoy and R.K. Boyd, J. Phys. Chem. 88 (1984) 6318.

    Google Scholar 

  6. W. Koch, F. Maquin, D. Stahl and H. Schwarz, Chimica 29 (1985) 376.

    Google Scholar 

  7. H. Helm, K. Stephan, T.D. Märk and D.L. Huestis, J. Chem. Phys. 74 (1981) 3844.

    Google Scholar 

  8. M. Kolbuszewski and J.S. Wright, Chem. Phys. Lett. 218 (1994) 338.

    Google Scholar 

  9. M.W. Wong, R.H. Nobes and L. Radom, Rapid Comm. Mass Spectrom. 1 (1987) 3.

    Google Scholar 

  10. T.D. Märk, Int. J. Mass Spectrom. Ion Phys. 55 (1983) 325.

    Google Scholar 

  11. L. Morvay and I. Cornides, Int. J. Mass Spectrom. Ion Proc. 62 (1984) 263.

    Google Scholar 

  12. S. Singh, R.K. Boyd, F.M. Harris and J.H. Beynon, Int. J. Mass Spectrom. Ion Proc. 66 (1986) 167.

    Google Scholar 

  13. R.G. Cooks, J.H. Beynon, R.M. Caprioli and G.R. Lester,Metastable Ions (Elsevier, Amsterdam, 1973).

    Google Scholar 

  14. P. Scheier and T.D. Märk, Phys. Rev. Lett. 73 (1994) 54.

    Google Scholar 

  15. P. Scheier, B. Dünser and T.D. Märk, Phys. Rev. Lett. 74 (1995) 3368.

    Google Scholar 

  16. B. Dünser, P. Scheier and T.D. Märk, Chem. Phys. Lett. 236 (1995) 271.

    Google Scholar 

  17. V. Grill, G. Walder, D. Margreiter, T. Rauth, H.U. Poll, P. Scheier and T.D. Märk, Z. Phys. D25 (1993) 217, and references therein.

    Google Scholar 

  18. Proc. 7th Int. Conf. on the Physics of Highly Charged Ions, Wien, 1994, eds. F. Aumayr, G. Betz and HP. Winter, Nucl. Instr. Meth. 98 (1995).

  19. P. Scheier and T.D. Märk, Phys. Rev. Lett. 59 (1987) 1813.

    Google Scholar 

  20. H.W. Kroto, J.R. Heath, S.C. O'Brien, R.F. Curl and R.E. Smalley, Nature 318 (1985) 162.

    Google Scholar 

  21. W. Krätschmer, L.D. Lamb, K. Fostiropoulos and D.R. Huffman, Nature 347 (1990) 354.

    Google Scholar 

  22. R.L. Hettich, R.N. Compton and R.H. Ritchie, Phys. Rev. Lett. 67 (1991) 1242.

    Google Scholar 

  23. P.A. Limbach, L. Schweikhard, K.A. Cowen, M.T. McDermott, A.G. Marshall and J.V. Coe, J. Am. Chem. Soc. 113 (1991) 6795.

    Google Scholar 

  24. M. Lezius, P. Scheier and T.D. Märk, Chem. Phys. Lett. 203 (1993) 232.

    Google Scholar 

  25. D.R. Luffer and K.H. Schram, Rapid Comm. Mass Spectrom. 4 (1990) 552.

    Google Scholar 

  26. A.B. Young, L.M. Cousins and A.G. Harrison, Rapid Comm. Mass Spectrom. 5 (1991) 226.

    Google Scholar 

  27. C. Lifshitz, M. Iraqi, T. Peres and J.E. Fischer, Rapid Comm. Mass Spectrom. 5 (1991) 238.

    Google Scholar 

  28. R.J. Doyle and M.M. Ross, J. Phys. Chem. 95 (1991) 4954.

    Google Scholar 

  29. C.W. Walter, Y.K. Bae, D.C. Lorents and J.R. Peterson, Chem. Phys. Lett. 195 (1992) 543.

    Google Scholar 

  30. G. Javahery, H. Wincel, S. Petrie and D.K. Bohme, Chem. Phys. Lett. 204 (1993) 467.

    Google Scholar 

  31. B. Walch, C.L. Cocke, R. Voelpel and E. Salzborn, Phys. Rev. Lett. 72 (1994) 1439.

    Google Scholar 

  32. P. Scheier, R. Robl, B. Schiestl and T.D. Märk, Chem. Phys. Lett. 220 (1994) 141.

    Google Scholar 

  33. P. Scheier and T.D. Märk, Int. J. Mass Spectrom. Ion Proc. 133 (1994) L5.

    Google Scholar 

  34. R. Völpel, G. Hofmann, M. Steidl, M. Stenke, M. Schlapp, R. Trassl and E. Salzborn, Phys. Rev. Lett. 71 (1993) 3439.

    Google Scholar 

  35. D.K. Bohme, Int. Rev. Phys. Chem. 13 (1994) 163.

    Google Scholar 

  36. P.P. Radi, M.T. Hsu, M.E. Rincon, P.R. Kemper and M.T. Bowers, Chem. Phys. Lett. 174 (1990) 223.

    Google Scholar 

  37. C. Lifshitz, M. Iraqi, T. Peres and J.E. Fischer, Int. J. Mass Spectrom. Ion Proc. 107 (1991) 56.

    Google Scholar 

  38. M. Foltin, M. Lezius, P. Scheier and T.D. Märk, J. Chem. Phys. 98 (1993) 9624.

    Google Scholar 

  39. M.A. Baldwin, P.J. Derrick and R.P. Morgan, Org. Mass Spectrom. 11 (1976) 440.

    Google Scholar 

  40. P. Scheier, B. Dünser and T.D. Märk, J. Phys. Chem. 99 (1995) 15428.

    Google Scholar 

  41. J.M. Hawkins, A. Meyer, T. Lewis, S. Loren and J.F. Hollander, Science 252 (1991) 312.

    Google Scholar 

  42. J. Hrusak and H. Schwarz, Chem. Phys. Lett. 205 (1993) 187.

    Google Scholar 

  43. K. Yamaguchi, S. Hayashi, M. Okumura, M. Nakano and W. Mori, Chem. Phys. Lett. 226 (1994) 372.

    Google Scholar 

  44. X. Jing and J.R. Chelikowsky, Phys. Rev. B46 (1992) 15503.

    Google Scholar 

  45. C. Xu and G.E. Scuseria, Phys. Rev. Lett. 72 (1994) 669.

    Google Scholar 

  46. C. Yannouleas, R.N. Barnett and U. Landman, Comm. At. Mol. Phys. (1995) in press.

  47. D. Kreisle, O. Echt, M. Knapp, E. Recknagel, K. Leiter and T.D. Märk, Phys. Rev. Lett. 54 (1986) 1551.

    Google Scholar 

  48. C. Brechignac, P. Cahuzac, F. Carlier and M. deFrutos, Phys. Rev. Lett. 72 (1994) 1636.

    Google Scholar 

  49. P. Scheier and T.D. Märk, Int. J. Mass Spectrom. Ion Proc. 146/147 (1995) 233.

    Google Scholar 

  50. C.E. Klots, J. Phys. Chem. 92 (1988) 5864.

    Google Scholar 

  51. Y. Ji, M. Foltin, C.H. Liao and T.D. Märk, J. Chem. Phys. 96 (1992) 3624.

    Google Scholar 

  52. P. Scheier, B. Dünser, Y.B. Kim and T.D. Märk, Fullere Science Techn. (1995) in press.

  53. D. Smith, N.G. Adams, E. Alge, H. Villinger and W. Lindinger, J. Phys. B13 (1980) 2787.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Based on a lecture given by S. Matt at the 1st Euroconference on Atomic Physics with Stored Highly Charged Ions, Heidelberg, 1995.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matt, S., Dünser, B., Senn, G. et al. Production and decay of highly-charged fullerene ions. Hyperfine Interact 99, 175–191 (1996). https://doi.org/10.1007/BF02274921

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02274921

Keywords

Navigation