Skip to main content
Log in

Optimization strategies in micellar electrokinetic capillary chromatography. Optimization of the temperature of the separation capillary

  • Originals
  • Published:
Chromatographia Aims and scope Submit manuscript

Summary

The influence of the temperature of the capillary on the separation of small molecules by micellar electrokinetic chromatography with buffers containing sodium dodecyl sulfate was examined. Investigated parameters were the electroosmotic velocity, the migration velocity of the micelles, the strength of the electric current, retention factors and plate numbers. Thermodynamic parameters associated with micelle solubilization were evaluated from the variation of the retention factor with temperature. An investigation was carried out as to whether the dependence of the electroosmotic velocity and the migration velocity of the micelles are mainly due to the decrease in viscosity and dielectric constant with increase in temperature. The temperature of the capillary strongly affects the plate numbers for various solutes obtained with the same chromatographic system. In order to exclude secondary effects by alteration of the instrumental band broadening and the electroosmotic velocity with temperature, a method is presented that permits the development of chromatograms in MEKC at various temperatures with constant injected plug length and constant electroosmotic velocity. The results are discussed from the point of view of minimizing the analysis time and optimizing the resolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Terabe, K. Otsuka, T. Ando, Anal. Chem.57, 834 (1985).

    Google Scholar 

  2. S. Terabe, T. Katsura, Y. Okada, Y. Ishihama, K. Otsuka, J. Microcol. Sep.5, 23 (1993).

    Google Scholar 

  3. A. T. Balchunas, M. J. Sepaniak, Anal. Chem.60, 617 (1988).

    Google Scholar 

  4. R. J. Nelson, A. Paulus, A. S. Cohen, A. Guttman, B. L. Karger, J. Chromatogr.480, 111 (1989).

    Google Scholar 

  5. M. Gilges, H. Husmann, M. H. Kleemiß, S. R. Motsch, G. Schomburg, J. HRC CC15, 452 (1992).

    Google Scholar 

  6. U. Bütehorn, Diplomarbeit, Marburg (1994).

  7. S. Terabe, “Micellar Electrokinetic Chromatography”, Beckman Instruments, Fullerton, USA (1992).

    Google Scholar 

  8. G. Kortüm, “Lehrbuch der Elektrochemie”, Verlag Chemie, Weinheim, 1971, p. 430 ff.

    Google Scholar 

  9. S. Hjertén, Chromatographic Reviews9, 122 (1967).

    Google Scholar 

  10. J. H. Knox, K. A. McCormack, Chromatographia38, 207 (1994).

    Google Scholar 

  11. Handbook of chemistry and physics, CRC Press, Boca Raton, 60th ed., 1979, p. E-61.

  12. Y. Kurosu, K. Hibi, T. Sasaki, M. Saito, J. HRC CC14, 200 (1991).

    Google Scholar 

  13. M. W. F. Nielen, M. J. A. Mensink, J. HRC CC14, 417 (1991).

    Google Scholar 

  14. C. Bjergegaard, S. Michaelsen, H. Sorensen, J. Chromatogr.608, 403 (1992).

    Google Scholar 

  15. S. Terabe, K. Otsuka, T. Ando, Anal. Chem.61, 251 (1989).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pyell, U., Bütehorn, U. Optimization strategies in micellar electrokinetic capillary chromatography. Optimization of the temperature of the separation capillary. Chromatographia 40, 69–77 (1995). https://doi.org/10.1007/BF02274610

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02274610

Key Words

Navigation