Skip to main content
Log in

Trace analysis of organics in aqueous samples by concentration in plastic tubing and multiplex gas chromatography

  • Originals
  • Published:
Chromatographia Aims and scope Submit manuscript

Summary

The inside wall of an uncoated polyethylene capillary traps organic substances from a water sample pumped through it by a nitrogen gas stream. Heating the capillary in a chromatographic oven slowly releases the trapped organic substances from the wall. Nitrogen carrier gas transports sample substances released through a thermal desorption modulator and onto a chromatographic column. Pulsing the temperature of the modulator modulates the concentrations of sample components as they enter the column. Computing the cross correlation of the detector output signal against the applied modulation signal generates the chromatogram. Detection limits below 1 ppb are possible using a flame ionization detector. No sample pretreatment or cold trap is required.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Bellar, J. J. Lichtenberg, J. Am. Water Works Assoc.66, 739 (1974).

    Google Scholar 

  2. K. Grob, K. Grob, Jr., G. Grob, J. Chromatogr.106, 299 (1975).

    Google Scholar 

  3. K. Grob, F. J. Zurcher, J. Chromatogr.117, 285 (1975).

    Google Scholar 

  4. W. A. Hoffman, Jr., Anal. Chem.50, 2158 (1978).

    Google Scholar 

  5. J. F. VanResnburg, A. J. Hasselt, HRC & CC5, 574 (1982).

    Google Scholar 

  6. H. Hachenberg, A. P. Schmidt, “Gas Chromatographic Headspace Analysis”, Heyden, New York, 1977.

    Google Scholar 

  7. A. Zlatkis, C. F. Poole, R. Brazell, K. Y. Lee, S. Singhawangcha, HRC & CC,2, 423 (1979).

    Google Scholar 

  8. G. Jung, J. Richard, Anal. Chem.60, 451 (1988).

    Google Scholar 

  9. P. VanRossum, R. Webb, J. Chromatogr.150, 381 (1978).

    Google Scholar 

  10. K. D. R. Setchell, J. Worthington, Clin. Chim. Acta125, 135 (1982).

    Google Scholar 

  11. M. R. Rice, H. S. Gold, Anal. Chem.56, 1436 (1984).

    Google Scholar 

  12. J. F. Pankow, M. P. Ligocki, M. E. Rosen, L. M. Isabelle, K. M. Hart, Anal. Chem.60, 40 (1988).

    Google Scholar 

  13. J. F. Pankow, L. M. Isabelle, T. J. Kristensen, Anal. Chem.54, 1815 (1982).

    Google Scholar 

  14. A. A. Nicholson, O. Meresz, B. Lemyk, Anal. Chem.49, 814 (1977).

    Google Scholar 

  15. K. Grob, A. Habich, HRC & CC6, 11 (1983).

    Google Scholar 

  16. A. Zlatkis, F. W. Wang, H. Shanfield, Anal. Chem.55, 1848 (1983).

    Google Scholar 

  17. A. Zlatkis, S. Weisner, L. Ghaoui, Chromatogr.21, 19 (1986).

    Google Scholar 

  18. J. B. Phillips, D. Luu, J. B. Pawliszyn, G. C. Carle, Anal. Chem.57, 2779 (1985).

    Google Scholar 

  19. R. Annino, Anal. Chem.51, 379 (1979).

    Google Scholar 

  20. J. B. Phillips, Anal. Chem.52, 468A (1980).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, M., Phillips, J.B. Trace analysis of organics in aqueous samples by concentration in plastic tubing and multiplex gas chromatography. Chromatographia 39, 294–298 (1994). https://doi.org/10.1007/BF02274516

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02274516

Key Words

Navigation