Advertisement

Chromatographia

, Volume 41, Issue 1–2, pp 75–83 | Cite as

Prediction of precision from signal and noise measurement in liquid chromatography: Mathematical relationship between integration domain and precision

  • Y. Hayashi
  • R. Matsuda
Originals

Summary

The precision of integration over noisy instrumental output for quantitative analysis is studied. A probability theory is developed to predict the relative standard deviation (RSD) of integration results over an integration domain from one-point integation (peak height measurement) to entire area integration in HPLC. Common integration modes of horizontal zero line and oblique zero line are taken into account, but no peak overlap is assumed. The question of the analytical superiority of peak height measurement or integration for quantitation is answered. In the HPLC apparatus used, the minimum RSD of measurements is found in the integration domain of ca. ±0.5 σ for analytes [peaks are approximated by the Gaussian signal of width, σ (standard deviation)]. The RSD of integration measurements is also shown to depend on the stochastic properties of back-ground noise (uncorrelated noise and correlated 1/f type noise). The theoretical conclusion is verified by Monte Carlo simulation and HPLC experiments for some aromatic compounds.

Key Words

Column liquid chromatography Limit of detection Precision Uncertainty prediction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Y. Hayashi, R. Matsuda, Chromatographia41, 66 (1995).Google Scholar
  2. [2]
    A. W. Westerberg, Anal. Chem.41, 1770 (1969).Google Scholar
  3. [3]
    L. R. Snyder, J. Chrom. Sci.10, 200 (1972).Google Scholar
  4. [4]
    J. P. Foley, J. Chromatogr.384, 301 (1987).Google Scholar
  5. [5]
    A. N. Papas, M. F. Delaney, Anal. Chem.59, 54A (1987).Google Scholar
  6. [6]
    N. Dyson, Chromatographic integration methods, Cambridge: Royal Society of Chemistry, 1990.Google Scholar
  7. [7]
    E. Grushka, I. Zamir, Chemical Analysis, 1989, Chapter 13.Google Scholar
  8. [8]
    J. F. K. Huber, J. A. R. J. Hulsman, C. A. M. Meijers, J. Chromatogr.62, 79 (1971).Google Scholar
  9. [9]
    H. Barth, E. Dallmeier, G. Courtois, H. E. Keller, B. L. Karger, J. Chromatogr.83, 289 (1973).Google Scholar
  10. [10]
    S. R. Bakalyar, R. A. Henry, J. Chromatogr.126, 327 (1976).Google Scholar
  11. [11]
    R. P. W. Scott, C. E. Reese, J. Chromatogr.138, 283 (1977).Google Scholar
  12. [12]
    I. Halász, P. Vogtel, J. Chromatogr.142, 241 (1977).Google Scholar
  13. [13]
    L. R. Snyder, S. van der Wal, Anal. Chem.53, 877 (1981).Google Scholar
  14. [14]
    Y. Hayashi, R. Matsuda, Chemom. Intell. Lab Syst.18, 1 (1993).Google Scholar
  15. [15]
    Y. Hayashi, R. Matsuda, Advances in Chromatography1994. Chapter 7.Google Scholar
  16. [16]
    Y. Hayashi, R. Matsuda, Anal. Sci.10, 553 (1994).Google Scholar
  17. [17]
    R. B. Poe, S. C. Rutan, Anal. Chim. Acta283, 845 (1993).Google Scholar
  18. [18]
    R. E. Synovec, E. S. Yeung, Anal. Chem.57, 2162 (1985).Google Scholar
  19. [19]
    T. Hirschfeld, Appl. Spectrosc.30, 67 (1976).Google Scholar
  20. [20]
    E. H. Piepmeier, Anal. Chem.48, 1296 (1976).Google Scholar
  21. [21]
    Y. Hayashi, R. Matsuda, Anal. Chem.66, 2874 (1994).Google Scholar
  22. [22]
    H. C. Smit, H. L. Walg, Chromatographia8, 311 (1975).Google Scholar
  23. [23]
    A. Bezegh, J. Janata, Anal. Chem.59, 494A (1987).Google Scholar
  24. [24]
    I. G. Giles, M. G. Gore, Anal. Chim. Acta151, 123 (1983).Google Scholar
  25. [25]
    R. P. Singhal, D. B. Smoll, J. Liquid Chromatogr.9, 2719 (1986).Google Scholar
  26. [26]
    J. Olivo, P. Cardot, I. Ignatiadis, C. Vidal-Madjar, J. Chromatogr.395, 383 (1987).Google Scholar
  27. [27]
    P. J. P. Cardot, P. Trolliard, S. Tembely, J. Pharm. Biomed. Anal.8, 755 (1990).Google Scholar
  28. [28]
    M. O. Koskinen, L. K. Koskinen, J. Liquid Chromatogr.16, 3171 (1993).Google Scholar
  29. [29]
    C. N. Renn, R. E. Synovec, Anal. Chem.60, 1829 (1988).Google Scholar
  30. [30]
    A. W. Moore, Jr., J. W. Jorgenson, Anal. Chem.65, 188 (1993).Google Scholar

Copyright information

© Friedr. Vieweg & Sohn Verlagsgesellschaft mbH 1995

Authors and Affiliations

  • Y. Hayashi
    • 1
  • R. Matsuda
    • 1
  1. 1.National Institute of Health SciencesTokyoJapan

Personalised recommendations