, Volume 41, Issue 1–2, pp 37–42 | Cite as

Simulation of column efficiency in temperature programmed gas-liquid chromatography

  • D. Messadi
  • L. Ferchichi
  • L. Nouar
  • N. Rebbani


If the dependence of HETP on temperature is specified under isothermal conditions, it is possible to predict the HETP for programmed temperature elution and subsequently peak width at half-height. This requires knowledge of isothermal retention time at retention temperature, which is computed by means of a model including the variation with temperature of dead time estimated from 3 homologs with carbon number: n, (n+j), (n+jk), where n, j and k are any integers. Predicted and measured peak widths corresponded within 4–9%.

Key Words

Gas chromatography Temperature programming Isothermal measurements Column efficiency Dead time 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    E. V. Dose, Anal. Chem.59, 2414 (1987).Google Scholar
  2. [2]
    E. V. Dose, Anal. Chem.59, 2420 (1987).Google Scholar
  3. [3]
    E. E. Akporhonor, S. le Vent, D. R. Taylor, J. Chromatogr.405, 67 (1987).Google Scholar
  4. [4]
    E. E. Akporhonor, S. le Vent, D. R. Taylor, J. Chromatogr.405, 271 (1989).Google Scholar
  5. [5]
    F. Helaimia, M. Boumahraz, H. Sissaoui, D. Messadi, Analusis17, 596 (1989).Google Scholar
  6. [6]
    M. Wernekenschnieder, P. Zinn, Chromatographia28, 241 (1989).Google Scholar
  7. [7]
    D. Messadi, F. Helaimia, S. Ali-Mokhnache, M. Boumahraz, Chromatographia29, 429 (1990).Google Scholar
  8. [8]
    D. E. Bautz, J. W. Dolan, W. D. Raddatz, L. R. Snyder, Anal. Chem.62, 1560 (1990).Google Scholar
  9. [9]
    D. E. Bautz, J. W. Dolan, L. R. Snyder, J. Chromatogr.541, 1 (1991).Google Scholar
  10. [10]
    J. W. Dolan, L. R. Snyder, D. E. Bautz, J. Chromatogr.541, 21, (1991).Google Scholar
  11. [11]
    L. R. Snyder, D. E. Bautz, J. W. Dolan, J. Chromatogr.541, 35, (1991).Google Scholar
  12. [12]
    M. C. Roman, R. W. Siegiej, J. Chromatogr.589, 215 (1992).Google Scholar
  13. [13]
    D. Messadi, S. Ali-Mokhnache, Chromatographia37, 264 (1993).Google Scholar
  14. [14]
    W. K. Al-Thamir, J. H. Purnell, C. A. Wellington, R. J. Laub, J. Chromatogr.173, 388 (1979).Google Scholar
  15. [15]
    C. F. Poole, S. A. Schuette, “Contemporary practice of chromatography”, Elsevier Science Publishers B.V., Amsterdam, 1986, p. 109.Google Scholar
  16. [16]
    R. J. Smith, J. K. Haken, M. S. Wainwright, J. Chromatogr.334, 95 (1985).Google Scholar
  17. [17]
    M. L. Peterson, J. Hirsch, J. Lipid Research1, 132 (1959).Google Scholar
  18. [18]
    L. S. Ettre, “Open tubular columns in gas chromatography”, Plenum Press, New York, 1965, p. 157.Google Scholar
  19. [19]
    H. J. Gold, Anal. Chem.34, 174 (1962).Google Scholar
  20. [20]
    S. Ali-Mokhnache, Thèse de Doctorat ès-Sciences, Université de Annaba, March 1994.Google Scholar
  21. [21]
    H. Haut, “Mathématiques et Statistiques”, Editions du P.S.I, Lagny-sur-Marne, France, 1981.Google Scholar
  22. [23]
    H. G. Korn, T. M. Korn, “Manual of mathematics”, McGraw-Hill Company, New York, 1967.Google Scholar
  23. [23]
    J. Lee, D. R. Taylor, Chromatographia16, 286 (1982).Google Scholar
  24. [24]
    J. Curvers, J. Rijks, C. Cramers, K. Knauss, P. Larson, J. High Resolut. Chromatogr. Chromatogr. Comm. 8, 607 (1985).Google Scholar
  25. [25]
    D. Messadi, J. M. Vergnaud, J. Appl. Polym. Sci.24, 9 (1979).Google Scholar
  26. [26]
    W. E. Harris, H. W. Habgood, “Programmed temperature gas chromatography”, Wiley, New York, 1966.Google Scholar
  27. [27]
    W. J. de Wet, W. Pretorius, Anal. Chem.30, 325 (1958).Google Scholar

Copyright information

© Friedr. Vieweg & Sohn Verlagsgesellschaft mbH 1995

Authors and Affiliations

  • D. Messadi
    • 1
  • L. Ferchichi
    • 1
  • L. Nouar
    • 1
  • N. Rebbani
    • 1
  1. 1.Pollution LaboratoryUniversity of AnnabaAnnabaAlgeria

Personalised recommendations