Advertisement

Chromatographia

, Volume 41, Issue 1–2, pp 37–42 | Cite as

Simulation of column efficiency in temperature programmed gas-liquid chromatography

  • D. Messadi
  • L. Ferchichi
  • L. Nouar
  • N. Rebbani
Originals
  • 23 Downloads

Summary

If the dependence of HETP on temperature is specified under isothermal conditions, it is possible to predict the HETP for programmed temperature elution and subsequently peak width at half-height. This requires knowledge of isothermal retention time at retention temperature, which is computed by means of a model including the variation with temperature of dead time estimated from 3 homologs with carbon number: n, (n+j), (n+jk), where n, j and k are any integers. Predicted and measured peak widths corresponded within 4–9%.

Key Words

Gas chromatography Temperature programming Isothermal measurements Column efficiency Dead time 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    E. V. Dose, Anal. Chem.59, 2414 (1987).Google Scholar
  2. [2]
    E. V. Dose, Anal. Chem.59, 2420 (1987).Google Scholar
  3. [3]
    E. E. Akporhonor, S. le Vent, D. R. Taylor, J. Chromatogr.405, 67 (1987).Google Scholar
  4. [4]
    E. E. Akporhonor, S. le Vent, D. R. Taylor, J. Chromatogr.405, 271 (1989).Google Scholar
  5. [5]
    F. Helaimia, M. Boumahraz, H. Sissaoui, D. Messadi, Analusis17, 596 (1989).Google Scholar
  6. [6]
    M. Wernekenschnieder, P. Zinn, Chromatographia28, 241 (1989).Google Scholar
  7. [7]
    D. Messadi, F. Helaimia, S. Ali-Mokhnache, M. Boumahraz, Chromatographia29, 429 (1990).Google Scholar
  8. [8]
    D. E. Bautz, J. W. Dolan, W. D. Raddatz, L. R. Snyder, Anal. Chem.62, 1560 (1990).Google Scholar
  9. [9]
    D. E. Bautz, J. W. Dolan, L. R. Snyder, J. Chromatogr.541, 1 (1991).Google Scholar
  10. [10]
    J. W. Dolan, L. R. Snyder, D. E. Bautz, J. Chromatogr.541, 21, (1991).Google Scholar
  11. [11]
    L. R. Snyder, D. E. Bautz, J. W. Dolan, J. Chromatogr.541, 35, (1991).Google Scholar
  12. [12]
    M. C. Roman, R. W. Siegiej, J. Chromatogr.589, 215 (1992).Google Scholar
  13. [13]
    D. Messadi, S. Ali-Mokhnache, Chromatographia37, 264 (1993).Google Scholar
  14. [14]
    W. K. Al-Thamir, J. H. Purnell, C. A. Wellington, R. J. Laub, J. Chromatogr.173, 388 (1979).Google Scholar
  15. [15]
    C. F. Poole, S. A. Schuette, “Contemporary practice of chromatography”, Elsevier Science Publishers B.V., Amsterdam, 1986, p. 109.Google Scholar
  16. [16]
    R. J. Smith, J. K. Haken, M. S. Wainwright, J. Chromatogr.334, 95 (1985).Google Scholar
  17. [17]
    M. L. Peterson, J. Hirsch, J. Lipid Research1, 132 (1959).Google Scholar
  18. [18]
    L. S. Ettre, “Open tubular columns in gas chromatography”, Plenum Press, New York, 1965, p. 157.Google Scholar
  19. [19]
    H. J. Gold, Anal. Chem.34, 174 (1962).Google Scholar
  20. [20]
    S. Ali-Mokhnache, Thèse de Doctorat ès-Sciences, Université de Annaba, March 1994.Google Scholar
  21. [21]
    H. Haut, “Mathématiques et Statistiques”, Editions du P.S.I, Lagny-sur-Marne, France, 1981.Google Scholar
  22. [23]
    H. G. Korn, T. M. Korn, “Manual of mathematics”, McGraw-Hill Company, New York, 1967.Google Scholar
  23. [23]
    J. Lee, D. R. Taylor, Chromatographia16, 286 (1982).Google Scholar
  24. [24]
    J. Curvers, J. Rijks, C. Cramers, K. Knauss, P. Larson, J. High Resolut. Chromatogr. Chromatogr. Comm. 8, 607 (1985).Google Scholar
  25. [25]
    D. Messadi, J. M. Vergnaud, J. Appl. Polym. Sci.24, 9 (1979).Google Scholar
  26. [26]
    W. E. Harris, H. W. Habgood, “Programmed temperature gas chromatography”, Wiley, New York, 1966.Google Scholar
  27. [27]
    W. J. de Wet, W. Pretorius, Anal. Chem.30, 325 (1958).Google Scholar

Copyright information

© Friedr. Vieweg & Sohn Verlagsgesellschaft mbH 1995

Authors and Affiliations

  • D. Messadi
    • 1
  • L. Ferchichi
    • 1
  • L. Nouar
    • 1
  • N. Rebbani
    • 1
  1. 1.Pollution LaboratoryUniversity of AnnabaAnnabaAlgeria

Personalised recommendations