Skip to main content
Log in

Some applications of projection operators in wavelets

  • Published:
Acta Mathematica Sinica Aims and scope Submit manuscript

Abstract

By rewriting the projection operatorP 0 in wavelets in another formula, we obtain a characterization of dimJ V0 (x) where V0 is a Γ-shift-invariant subspace ofL 2(R n) derived from a dual wavelet basis and prove that there does not exist a wavelet function ϕ ∈L 2(R) such that\(\hat \psi \) has compact support and ∪ k∈ℤ(supp\(\hat \psi \)+4πk) =R up to a zero subset ofR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ausher, P., Iln'existe pas de bases d'ondelettes regulières dans l'espace de Hardy H 2 (R), C. R. Acad. Sci. Paris, t. 315, serie I, p.769–772, 1992.

  2. Bonami, A., Soria, F. & Weiss, G., Band-Limited Wavelets, preprint.

  3. de Boor, C., Devore, R.A. & Ron, A.,The Structure of finitely generated shift-invariant Spaces inL 2(R d), preprint.

  4. Daubechies, I., Ten Lectures on Wavelets, SIAM-NSF Regional Conference Series # 61, SIAM publ. (1992).

  5. Han, B.,On dual wavelet tight frames, preprint.

  6. Lemarié, P.G.,Existence de « fonction-père » pour les ondelettes à support compact, C. R. Acad. Sci. Paris, t. 314, serie I, p.17–19, 1992.

  7. Lemarié, P.G., Sur léxistence des analyses multi-résolutions en théorie des ondelettes, Revista Matemática Iberoamericana, Vol. 8, No. 3, 1992.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bin, H. Some applications of projection operators in wavelets. Acta Mathematica Sinica 11, 105–112 (1995). https://doi.org/10.1007/BF02274053

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02274053

Keywords

Navigation