Acta Mathematica Sinica

, Volume 11, Issue 1, pp 44–52 | Cite as

The relative canonical algebra for genus 4 fibrations

  • Cai Jinxing


In this paper, we prove that for the genus 4 fibration, the relative canonical algebra is generated in degrees ≤3.


Canonical Algebra 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Reid, M.,Problems on pencils of small genus, Preprint.Google Scholar
  2. [2]
    Reid, M., Elliptic Gorenstein Singularities of Surfaces, unpublished manuscript.Google Scholar
  3. [3]
    Mendes Lopes, M.,The Relative Canonical Algebra for Genus 3 Fibrations, Warwick Ph. D. thesis, 1988.Google Scholar
  4. [4]
    Hartshorne, R.,Algebraic Geometry, GTM 52, Springer-Verlag, 1977.Google Scholar
  5. [5]
    Barth, W., Peters, C., Van De Ven, A., Compact Complex Surfaces, Springer-Verlag, 1984.Google Scholar
  6. [6]
    Mumford, D., Varieties defined by quadratic equations, in (CIME Varenna 1969), Edizione Gremonese, Roma, 1970.Google Scholar
  7. [7]
    Saint-Donat, B.,On Petri's analysis of the linear system of quadrics through a canonical curve, Math. Ann.,206(1973).Google Scholar
  8. [8]
    Xiao, G., Surfaces fibrées en courbes de genre deux, LNM 1137, Springer-Verlag, 1985.Google Scholar

Copyright information

© Science Press 1995

Authors and Affiliations

  • Cai Jinxing
    • 1
  1. 1.Department of MathematicsEast China Normal UniversityShanghaiPeople's Republic of China

Personalised recommendations