Skip to main content
Log in

Three-dimensional manifestly Poincaré-invariant approach to the relativistic three-body problem

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

A three-dimensional manifestly Poincaré-invariant approach to the relativistic three-body problem is developed that satisfies the requirement of cluster separability and at the same time does not lead to so-called spurious states devoid of physical meaning. It is shown that these requirements make it possible to fix the form of the operators of the two-body interactions. The problem is solved with allowance for the dependence of the interaction operators on the spectral parameter. This dependence is a manifestation of the structure of the particles in the three-body system (i.e., it reflects the circumstance that the complete Hilbert space of state vectors of the system includes not only three-body configurations of the original particles) and leads to the appearance of certain factors in the cross sections of physical processes. Two alternative formulations of the method are investigated. In the first formulation, equations are written down for the amplitudes of transitions between free-particle states. In the second formulation, the states of interacting particles in the two-body scattering channels are used as complete orthogonal bases. Partial-wave expansions of the equations with respect to states with given total angular momentum of the system in the helicity basis are made.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. A. Tjon,Few Body Systems, Suppl. No. 1, 445 (1986).

    Google Scholar 

  2. T. I. Kopaleishvili,Problems of the Theory of the Interaction of Pions with Nuclei [in Russian], Énergoatomizdat, Moscow (1984).

    Google Scholar 

  3. I. R. Afnan and B. C. Pearce,Phys. Rev. C,31, 986 (1985).

    Google Scholar 

  4. F. Gross and J. Milana,Phys. Rev. D,43, 2401 (1991).

    Google Scholar 

  5. P. C. Tiemeijer, in:Proc. 14th European Conference on Few-Body Problems in Physics, Amsterdam, 23–27 August 1993, p. 43.

  6. E. Salpeter and H. A. Bethe,Phys. Rev.,84, 1232 (1951).

    Google Scholar 

  7. V. P. Shelest and D. Stoyanov,Phys. Lett. 13, 253 (1964).

    Google Scholar 

  8. D. Stoyanov and A. N. Tavkhelidze,Phys. Lett.,13, 76 (1964).

    Google Scholar 

  9. E. Faasen and J. A. Tjon,Phys. Rev.,33, 2105 (1986).

    Google Scholar 

  10. F. Gross, J. W. Van Order, and K. Holinde,Phys. Rev. C,45, 2094 (1992).

    Google Scholar 

  11. S. Weinberg,Phys. Rev.,150, 1313 (1966).

    Google Scholar 

  12. J. M. Namislowski and H. J. Weber,Zh. Phys. A,295, 219 (1980).

    Google Scholar 

  13. A. A. Logunov and A. N. Tavkhelidze,Nuovo Cimento,23, 380 (1963).

    Google Scholar 

  14. R. N. Faustov,Fiz. Elem. Chastits At. Yadra,3, 238 (1972).

    Google Scholar 

  15. V. A. Rizov and I. T. Todorov,Fiz. Elem. Chastits At. Yadra,6, 669 (1975).

    Google Scholar 

  16. R. Blankenbecler and R. Sugar,Phys. Rev.,142, 1051 (1966).

    Google Scholar 

  17. V. G. Kadyshevskii, R. M. Mir-Kasimov, and N. B. Skachkov,Fiz. Elem. Chastits At. Yadra,2, 635 (1972).

    Google Scholar 

  18. F. Gross,Phys. Rev. D,26, 2203 (1982);Few-Body Systems, Suppl. No. 1, 432 (1986).

    Google Scholar 

  19. V. R. Garsevanishvili, A. N. Kvinikhidze, A. N. Matveev, A. N. Tavkhelidze, and R. N. Faustov,Teor. Mat. Fiz.,25, 37 (1975).

    Google Scholar 

  20. J. Frohlich, K. Schwarz, and H. F. K. Zingl,Phys. Rev.,27, 265 (1983).

    Google Scholar 

  21. V. A. Alessandrini and R. L. Omnes,Phys. Rev. B,139, 167 (1965).

    Google Scholar 

  22. D. Z. Freedman, C. Lovelace, and J. M. Namislowski,Nuovo Cimento A,43, 258 (1966).

    Google Scholar 

  23. R. Aaron, R. D. Amado, and J. E. Young,Phys. Rev.,174, 2022 (1968).

    Google Scholar 

  24. J. G. Taylor,Phys. Rev.,150, 1321 (1966).

    Google Scholar 

  25. A. N. Kvinikhidze and D. Ts. Stoyanov,Teor. Mat. Fiz.,16, 42 (1973).

    Google Scholar 

  26. V. M. Vinogradov,Teor. Mat. Fiz. 12, 29 (1972);10, 338 (1972).

    Google Scholar 

  27. F. Gross,Phys. Rev. C,26, 2226 (1982).

    Article  Google Scholar 

  28. A. W. Thomas and R. H. Landau,Phys. Rep.,53, 121 (1980).

    Article  Google Scholar 

  29. L. Mathelitsch and H. Garsilazo,Phys. Rev. C,32, 1635 (1985); H. Garsilazo,J. Math. Phys.,27, 2576 (1986).

    Article  Google Scholar 

  30. A. A. Arkhipov and V. I. Savrin,Teor. Mat. Fiz.,16, 328 (1973).

    Google Scholar 

  31. P. A. M. Dirac,Rev. Mod. Phys.,21, 392 (1949).

    Article  Google Scholar 

  32. S. N. Sokolov and A. N. Shatnii,Teor. Mat. Fiz.,37, 291 (1978).

    Google Scholar 

  33. D. G. Currie, T. E. Jordan, and E. C. G. Sudarshan,Rev. Mod. Phys.,35, 350 (1963).

    Article  Google Scholar 

  34. F. Coester,Helv. Phys. Acta,38, 7 (1965).

    Google Scholar 

  35. G. Schierholz,Nucl. Phys. B,7, 432 (1968).

    Article  Google Scholar 

  36. S. N. Sokolov,Dokl. Akad. Nauk SSSR,233, 575 (1977);Teor. Mat. Fiz.,36, 193 (1978).

    Google Scholar 

  37. L. A. Kondratyuk and M. V. Terent'ev,Yad. Fiz.,31, 1087 (1980).

    Google Scholar 

  38. B. L. G. Bakker and L. A. Kondratyuk,Nucl. Phys. B,158, 497 (1979).

    Article  Google Scholar 

  39. H. Leutwyler and J. Stern,Ann. Phys. (N.Y.),112, 490 (1979).

    Google Scholar 

  40. F. Coester and W. N. Polyzou,Phys. Rev. D,26, 1348 (1982).

    Article  Google Scholar 

  41. L. L. Foldy,Phys. Rev.,122, 275 (1961).

    Article  Google Scholar 

  42. L. L. Foldy and R. A. Krajcik,Phys. Rev. D,12, 1700 (1975).

    Article  Google Scholar 

  43. F. M. Lev,Fiz. Elem. Chastits At. Yadra,21, 1251 (1990).

    Google Scholar 

  44. A. N. Safronov,Teor. Mat. Fiz.,89, 420 (1991); “Three-dimensional covariant formulation of the relativistic three-body problem”, Deposited Paper No. 2036-V87, VINITI, Moscow (1987); “Microscopic methods in the theory of few-particle systems,” in:Proceedings of International Seminar, August 15–21, 1988, Vol. 1 [in Russian], Kalinin (1988), p. 11.

    Google Scholar 

  45. H. Garcilazo and L. Mathelitsch,Phys. Rev. C,28, 1272 (1983).

    Article  Google Scholar 

  46. S. P. Merkur'ev and L. D. Faddeev,Quantum Scattering Theory for Few-Particle Systems [in Russian], Nauka, Moscow (1985).

    Google Scholar 

  47. G. C. Wick,Ann. Phys. (N. Y.),18, 65 (1962).

    Article  Google Scholar 

  48. E. W. Schmid and H. Ziegelmann,The Quantum-Mechanical Three-Body Problem, Vieweg, Oxford (1974).

    Google Scholar 

  49. E. O. Alt, P. Grassberger, and W. Sandhas,Nucl. Phys. B,2, 167 (1967).

    Article  Google Scholar 

  50. B. R. Karlsson and E. M. Zeiger,Phys. Rev. D,11, 939 (1975).

    Article  Google Scholar 

  51. A. Abdurakhmanov and A. L. Zubarev,Z. Phys. A,322, 523 (1985).

    Article  Google Scholar 

  52. Yu. A. Kuperin, K. A. Makarov, S. P. Merkur'ev, A. K. Motovilov, and B. S. Pavlov,Teor. Mat. Fiz. 75, 431 (1988);76, 242 (1988).

    Google Scholar 

  53. A. N. Safronov,Yad. Fiz.,57, 208 (1994).

    Google Scholar 

  54. Yu. A. Simonov,Phys. Lett. B,107, 1 (1981).

    Article  Google Scholar 

  55. Yu. S. Kalashnikova, I. M. Narodetskii, and V. P. Yurov,Yad. Fiz.,49, 632 (1989).

    Google Scholar 

  56. M. Lacombeet al., Phys. Rev. D,12, 1495 (1975).

    Article  Google Scholar 

Download references

Authors

Additional information

Institute of Nuclear Physics of the State University, Moscow. Translated from Teoreticheskaya i Matematicheskaya Fizika, Vol. 103, No. 2, pp. 200–232, May, 1995.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Safronov, A.N. Three-dimensional manifestly Poincaré-invariant approach to the relativistic three-body problem. Theor Math Phys 103, 502–524 (1995). https://doi.org/10.1007/BF02274028

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02274028

Keywords

Navigation