Skip to main content
Log in

Physical characteristics of the davos-type pyrradiometer for short- and long-wave radiation

Physikalische Charakteristiken des Davos-Pyrradiometers für kurz- und langwellige Strahlung

  • Published:
Archives for meteorology, geophysics, and bioclimatology, Series B Aims and scope Submit manuscript

Summary

The calibration factors of the Davos-type pyrradiometer were investigated experimentally and theoretically for both long-wave and short-wave radiation. The apparatus which was developed for calibrating pyrradiometers for long-wave radiation is illustrated. The calibration for long-wave radiation was made over melting ice and a heated water surface of 40°C with an instrument temperature of 20°C. The following characteristics were investigated: cosine and azimuth errors; the efficiency of the thermopile; the effects of ventilation, thermal stability of the air in the hemisphere and the overheating of the polyethylene hemisphere. The results are summarized in the form of ratios of calibration factors for long-wave radiation to those for short-wave radiation under various conditions. Improved methods of installing pyrradiometers and of evaluating the field data are recommended.

Zusammenfassung

Die Eichfaktoren des Davos-Pyrradiometers wurden für lang- und kurzwellige Strahlungen experimentell und theoretisch untersucht. Das Gerät für die Eichung im langwelligen Strahlungsbereich, welches für diesen Zweck entwickelt wurde, wird eingehend beschrieben. Mit diesem Gerät wurde das Pyrradiometer über einer schmelzenden Eisoberfläche und über einer bis 40°C geheizten Wasseroberfläche geeicht. Die folgenden Eigenschaften wurden untersucht: Cosinus- und Azimutfehler; Leistung der Thermosäule; Einflüsse der Belüftung, der thermischen Stabilität der Luft in der Polyäthylenhaube und der Überheizung der Haube. Die Ergebnisse werden durch das VerhältnisK 1/K s zusammengefaßt. Eine Verbesserung der Aufstellung des Pyrradiometers sowie der Auswertung der Daten werden vorgeschlagen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

A s :

Absorptivity of Parson's optical black mat lacquer for short-wave radiation, 0.985

C :

Bulk heat conductance of air in the hemisphere, parameterized by the temperature difference between the sensor surface and the instrument thermometer temperatures

E :

Radiative energy flux falling on the radiometer

EMF :

Output of the radiometer

K 1 :

Calibration factor for long-wave radiation

K s :

Calibration factor for short-wave radiation

k :

Bulk heat conductance of the sensor, parameterized by the sensor surface temperature and the temperature at the instrument thermometer

L :

Long-wave radiation flux on the radiometer

S :

Short-wave radiation flux on the radiometer

T h :

Temperature of the polyethylene hemisphere

T i :

Temperature of the cold junctions measured at the instrument thermometerT s Surface temperature of the sensor

α :

Sensitivity of the thermopile, according to Wierzejewski 2.4 mV K−1 and according to this study 2.0 mV K−1

ε s :

Emissivity and absorptivity of Parsons's optical black mat lacquer for long-wave radiation 0.95

ε h :

Emissivity and absorptivity of the polyethylene hemisphere for long-wave radiation, 0.12

σ:

Stefan-Boltzmann constant

τ s :

Transmissivity of the polyethylene hemisphere for short-wave radiation, 0.95

References

  1. Ambach, W., Beschorner, E., Hoinkes, H.: Über die Eichung des Strahlungsbilanzmessers nach R. Schulze (Lupolengerät). Arch. Met. Geoph. Biokl., Ser. B13, 76–97 (1963).

    Google Scholar 

  2. Davies, J. A., Robinson, P. J., Nunez, M.: Field Determination of Surface Emissivity and Temperature for Lake Ontario. J. appl. Met.10, 811–819 (1971).

    Google Scholar 

  3. Funk, J. P.: A Note on the Long-Wave Calibration of Convectively Shielded Net Radiometers. Arch. Met. Geoph. Biokl., Ser. B11, 70–74 (1962).

    Google Scholar 

  4. Hinzpeter, H.: Ober lupolengeschiitzte Strahlungsumsatzmesser. Z. Met.15, 13–20 (1961).

    Google Scholar 

  5. Kondratyev, K. Ya.: Radiation in the Atmosphere. Internat. Geophys. Ser. Vol. 12. New York: Academic Press 1969.

    Google Scholar 

  6. Kuhn, M.: Principles of the Calibration of Thermal Radiometers, Illustrated by the Performance of 12 Instruments in Antarctic Field Work. Proceedings of Symposium on Solar Radiation, Measurements and Instrumentation, November 13–15, 1973, Smithsonian Institutions, Radiation Biology Laboratory, 217–268 (1975).

  7. Robinson, N.: Solar Radiation. Amsterdam: Elsevier 1966.

    Google Scholar 

  8. Wierzejewski, H.: Bedienungsanleitung für das tragbare Einfach-Pyrradiometer-Pyranometer Typ PDl-QK portabel mit Zubehör. Unpublished Memorandum, Davos: Phys. Meteorol, Observatorium Davos 1969.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

With 8 Figures

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ohmura, A., Schroff, K. Physical characteristics of the davos-type pyrradiometer for short- and long-wave radiation. Arch. Met. Geoph. Biocl., Ser. B 33, 57–76 (1983). https://doi.org/10.1007/BF02273990

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02273990

Keywords

Navigation