Advertisement

A comparison of the snowmelt energy budgets in two alpine basins

  • R. D. Moore
Article

Summary

The snow surface energy budgets in two alpine basins in New Zealand's South Island were calculated from meteorological observations made during a spring melt period. The sensible heat flux was the most important energy source and precipitation heat flow the least important at both sites. Latent heat was the second greatest source at the more maritime site while net radiation was more important than latent heat at the other site. The greater cloud cover at the more maritime site accounts for the lower net radiation received there. The differences in the sensible and latent heat fluxes are due to differences in the air temperature, humidity and wind speed between the sites. No reliable relationship between the wind speeds at the two sites appears to exist. The differences in temperature and humidity result from the influences of different airmasses and the modification of airmasses as they traverse the mountain ranges.

Keywords

Heat Flux Wind Speed Latent Heat Mountain Range Cloud Cover 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Vergleich von Schneeschmetzenergiehaushalten zweier alpiner Becken

Zussamenfassung

Die Schneeschmelzenergiehaushalte zweier alpiner Becken der Südinsel Neuseelands wurden auf Grund meteorologischer Beobachtungen während der Frühjahrsaperung erstellt. An beiden Standorten stellte die konvektionelle Wärmeübertragung die wichtigste, die durch Niederschläge zugeführte Wärme die unwichtigste Energiequelle dar. Am ozeannahen Standort war Latentwärme die zweitgrößte Quelle, während am anderen Standort Nettoeinstrahlung von größerer Bedeutung war als Latentwänne. Höherer Bewölkungsgrad am ozeanischen Standort führte zu geringerer Nettoeinstrahlung. Differenzen zwischen Konvektions- und Latentwärmefluß sind auf unterschiedliche Lufttemperatur, Luftfeuchtigkeit und Windgeschwindigkeit an beiden Standorten zurückzuführen. Es scheint kein eindeutiger Zusammenhang zwischen den Windgeschwindigkeiten an beiden Standorten zu bestehen. Temperatur- und Luftfeuchtigkeitsunterschiede sind auf Einflüsse unterschiedlicher Luftmassen und auf Luftmassenveränderungen beim Überqueren der Gebirgskette zurückzuführen.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Anderson, E. A.: A Point Energy and Mass Balance of a Snow Cover. NOAA Tech. Rep. NWS 19, 150 pp. (1976).Google Scholar
  2. 2.
    Fitzharris, B. B., Stewart, D., Hutchinson, W.: Contribution of Snowmelt to the October 1978 Flood of the Pomahaka and Fraser Rivers, Otago. J. Hydrol. (N.Z.)19, 84–93 (1980).Google Scholar
  3. 3.
    Grainger, M. E., Lister, H.: Windspeed, Stability and Eddy Viscosity over Melting Ice Surfaces. J. Glaciol.6, 101–127 (1966).Google Scholar
  4. 4.
    Lee, R.: Theory of the Equivalent Slope. Mon. Weath. Rev.4, 165–166 (1962).Google Scholar
  5. 5.
    Light, P.: Analysis of High Rates of Snow Melting. Trans. Amer. Geoph. Union22, 195–205 (1941).Google Scholar
  6. 6.
    Male, D. H., Granger, R. J.: Snow Surface Energy Exchange. Water Resour. Res.17, 609–627 (1981).Google Scholar
  7. 7.
    Marks, D.: An Atmospheric Radiation Model for General Alpine Application. In: Modelling of Snowcover Runoff (Colbeck, S. C., Ray, M., eds.), pp. 167–178. Hanover, New Hampshire: CRREL 1979.Google Scholar
  8. 8.
    Moore, R. D., Owens, I. F.: Controls on Advective Snowmelt in a Maritime Alpine Basin. (In preparation.)Google Scholar
  9. 9.
    Price, A. G.: Snowmelt Runoff Processes in a Subarctic Area. Climatology Research Series No. 10, 106 pp. McGill University, Montreal, 1977.Google Scholar
  10. 10.
    Prowse, T. D., Owens, I. F.: The Energy Balance of a Melting Snowpack, Craigieburn Range, New Zealand. J. Hydrol. (N.Z.) (In press.)Google Scholar
  11. 11.
    Sellers, W. E.: Physical Climatology, 272 pp. Chicago: University of Chicago Press 1965.Google Scholar
  12. 12.
    Sverdrup, H. U.: The Eddy Conductivity of the Air over a Smooth Snow Field. Geofys. Publikasjoner11, 1–69 (1936).Google Scholar

Copyright information

© Springer-Verlag 1983

Authors and Affiliations

  • R. D. Moore
    • 1
  1. 1.Department of GeographyUniversity of CanterburyNew Zealand

Personalised recommendations