Skip to main content
Log in

Winter energy budget simulation for a latitudinal transect along the east coast of the Americas

Simulation des Energiebudgets im Winter für einen Breitenquerschnitt entlang der Ostküste von Amerika

  • Published:
Archives for meteorology, geophysics, and bioclimatology, Series B Aims and scope Submit manuscript

Summary

This paper continues the application of a physically-based model, comprising a combination of a solar transmission section and a slope energy budget portion [2]. The changing energy budget components (net radiation, conduction, sensible, and latent heat fluxes) occurring at the various slope angles (0 and 90 degrees) and orientations (south-, west-, and north-facing) were systematically examined in the context of two contrasting environments along a latitudinal transect of the east coast of the Americas. As before, the response of the energy budget components were systematic and orderly on a latitudinal basis accompanied by a great diversity among the energy budgets of different slopes and orientations at any particular latitude.

Zusammenfassung

Diese Arbeit bringt eine Fortsetzung der Anwendung eines physikalisch begründeten Modells, das eine Kombination zwischen der Sonnenstrahlungsübermittlung und dem Energiebudget auf einem Hang umfasst [2]. Die sich ändernden Komponenten des Energiehaushalts (Strahlungsbilanz, Leitung, sensible und latente Wärmeströme) bei verschiedenen Hangneigungen (0 his 90 Grad) und verschiedenen Orientierungen (gegen Süden, Westen und Norden) werden fur zwei kontrastierende Umweltsformen entlang eines Breitenquerschnittes auf der Ostküste von Nordamerika untersucht. Die Auswirkungen der Komponenten des Energiehaushaltes zeigen sich in systematischer und geordneter Abhängigkeit von der geographischen Breite begleitet von grossen Verschiedenheiten zwischen den Energiebudgets an verschiedenen Hängen und bei verschiedenen Orientierungen in einer bestimmten geographischen Breite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kondratyev, K. Ya.: Radiation Regime of Inclined Surfaces. Tech. Note No. 152, Geneva: WMO 1977.

  2. Terjung, W. H., O'Rourke, P. A.: A Simulation of Surface Temperatures for a NorthSouth Latitudinal Transect During the Winter Solstice. Arch. Met. Geoph. Biocl., Ser. B32, 59–76 (1983).

    Article  Google Scholar 

  3. Terjung, W. H., O'Rourke, P. A.: The Relative Effect of Solar Altitude on Surface Temperatures and Energy Budget Components on Two Contrasting Landscapes. Boundary-Layer Met.24, 67–76 (1982).

    Article  Google Scholar 

  4. Terjung, W. H., O'Rourke, P. A.: A Worldwide Examination of Solar Beam-Slope Angle Values. Solar Energy, 1982. (In press.)

  5. Terjung, W. H., O'Rourke, P. A.: 1982, The Effects of Changing Solar Angles, Cloud Regimes, and Air Temperatures of Contrasting Surfaces. Boundary-Layer Met.24, 69–279 (1982).

    Google Scholar 

  6. Terjung, W. H., O'Rourke, P. A.: Energy Budget Changes Caused by Varying Solar Angles, Cloud Scenarios, and Air Temperatures in Contrasting Landscapes. Int. J. Biomet., 1982. (In press.)

  7. Terjung, W. H., O'Rourke, P. A.: Simulating Midday All-Slope Surface Temperatures Along a Climatic-Latitudinal Transect During Cloudless Summer Conditions. Boundary-Layer Met.24, 481–493 (1982).

    Article  Google Scholar 

  8. Meteorological Office: Tables of Temperature, Relative Humidity and Precipitation for the World. Her Maj. Stat. Office, London, 1961-63.

    Google Scholar 

  9. Atwater, N. M., Ball, J. T.: A Numerical Solar Radiation Model Based on Standard Meteorological Observations. Solar Energy21, 163–170 (1978).

    Article  Google Scholar 

  10. Atwater, M. A., Ball, J. T.: Erratum, Solar Energy23, 275 (1979).

    Article  Google Scholar 

  11. Atwater, M. A., Brown, P. S.: Numerical Computations of the Latitudinal Variation of Solar Radiation for an Atmosphere of Varying Opacity. J. Appl. Met. 13, 289–297 (1974).

    Google Scholar 

  12. Atwater, M. A., Lunde, P. J.: A Cloud-Cover Radiation Model Producing Results Equivalent to Measured Radiation Data. In: 1979 International Congress of the International Solar Energy Soc., Atlanta, Ga., 1979.

  13. Terjung, W. H., O'Rourke, P. A.: Energy Exchanges in Urban Landscapes: Selected Climatic Models, Publications in Climatology,XXXIII, C. W. Thornthwaite Associates and Center for Climatic Research, Elmer, N. J. and Newark, Del., 1980.

    Google Scholar 

  14. Terjung, W. H., O'Rourke, P. A.: Simulating the Causal Elements of Urban Heat Islands. Boundary-Layer Met.19, 93–118 (1980).

    Article  Google Scholar 

  15. Terjung, W. H., Louie, S. S.-F.: A Climatic Model of Urban Energy Budgets. Geogr. Analysis6, 341–367 (1974).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

With 3 Figures

Dr. O'Rourke is currently a Post-Doctural Scholar at UCLA from Litton Systems, Inc., Data Systems Division.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Terjung, W.H., A. O'Rourke, P. Winter energy budget simulation for a latitudinal transect along the east coast of the Americas. Arch. Met. Geoph. Biocl., Ser. B 32, 187–199 (1983). https://doi.org/10.1007/BF02273973

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02273973

Keywords

Navigation