Mathematical Geology

, Volume 28, Issue 1, pp 87–109 | Cite as

Morphometry of microstromatolites in calcrete laminar crusts and a fractal model of their growth

  • Eric P. Verrecchia


The laminar crust, constituting the upper part of calcretes (terrestrial CaCO3 accumulations inside surficial sediments), is a succession of thin layers of various colors and shapes resembling micro-stromatolites. The crust structure and its diagenetic evolution are similar to stromatolites. A quantitative study of its structure was made using image analysis. Euclidian parameters were calculated to describe lamina shape. Eight hundred and eighty-six laminae were divided into six classes from the flatest forms to columnar shapes. The geometrical relationships between the shapes are interpreted as steps in the growth process of the microstromatolite. A fractal model of laminar crust growth was developed, using the diffusion-limited aggregation model (DLA) and dilation (an operation of mathematical morphology). This model simulates all growth steps observed in thin section and emphasizes the necessity of an interface with the atmosphere to explain the variety of shapes. This growth model supports the theory of a surficial and biogenic origin for certain calcrete laminar crusts.

Key words

calcrete algal mats diffusion-limited aggregation morphometry fractals image analysis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Assereto, R. L. M., and Kendall, G. G. St. C., 1977, Nature, origin and classification of peritidal tepee structures and related breccias: Sedimentology. v. 24. no. 2, p. 153–210.Google Scholar
  2. Botha, G. A., and Hughes, J. C. 1992, Pedogenic palygorskite and dolomite in a Late Neogene sedimentary succession, northwestern Transvaal, South Africa: Geodemia, v. 53, no. 1–2, p. 139–154.Google Scholar
  3. Coster, M., and Chermant, J.-L., 1989. Précis d'analyse d'images: Presses du Centre National de la Recherche Scientifique, Paris, 560 p.Google Scholar
  4. El Soudani, S. M., 1978, Profilometric analysis of fractures: Metallography, v. 11, p. 247–336.CrossRefGoogle Scholar
  5. Esteban, M., and Klappa, C. F. 1983, Subaerial exposure environment,in Scholle, P. A., Bebout, D. G., and Moore, C. H., eds., Carbonate depositional environments: Am. Assoc. Petroleum Geologists Mem. 33, p. 24–45.Google Scholar
  6. Freytet, P., 1971, Paléosols résiduels et paléosols alluviaux hydromorphes associés aux dépôts fluviatiles dans le Crétacé supérieur et l'Eocène basal du Languedoc: Rev. Géogr. Phys. et Géol. Dyn., v. 13, no. 3, p. 245–268.Google Scholar
  7. Freytet, P., Plaziat, J.-C., and Purser, B. H., 1982, Continental carbonate sedimentation and pedogenesis in Late Cretaceous and Early Tertiary in southern France: E. Schweizerbare'sche Verlagsbushhandlung, Stuttgart, Contributions to Sedimentology, no. 12, 213 p.Google Scholar
  8. Gile, L. H., Peterson, F. F., and Grossman, R. B., 1966, Morphological and genetic sequences of carbonate accumulation in desert soils: Soil Sci., v. 101, no. 5, p. 347–360.Google Scholar
  9. Gile, L. H., Hawley, J. W., and Grossman, R. B., 1981, Soils and geomorphology in the Basin and Range area of southern New Mexico, Guidebook to the Desert Project: New Mexico Bur. Mines Mineral Res. Mem. 39, 222 p.Google Scholar
  10. Gouyet, J.-F., 1992, Physique el structures fractales: Masson, Paris, 234 p.Google Scholar
  11. Hofmann, H. J., 1969, Attributes of stromatolites: Geol. Survey Canada Paper 69-39, 58 p.Google Scholar
  12. Hofmann, H. J., 1973, Stromatolites: characteristics and utility: Earth Sci. Reviews, v. 9, no. 4, p. 339–373.CrossRefGoogle Scholar
  13. Hofmann, H. J., 1976, Stromatoid morphometrics,in Walter, M. R., ed., Stromatolites: Developments in Sedimentology, v. 20, Elsevier, Amsterdam, p. 45–54.Google Scholar
  14. Hofmann, H. J., 1977, On Aphebian stromatolites and Riphean stromatolite stratigraphy: Precambrian Res., v. 5, no. 2, p. 175–205.CrossRefGoogle Scholar
  15. Jennings, J. N., and Sweeting, M. M., 1961, Caliche pseudo-anticlines in the Fitzroy Basin, West Australia: Am. Jour. Sci., v. 259, no. 8, p. 635–639.Google Scholar
  16. Jullien, R., 1986, Les phénomènes d'agrégation et les agrégats fractals: Ann. Télécommun., v. 41, p. 343–372.Google Scholar
  17. Kaye, B. H., 1989, Image analysis techniques for characterizing fractal structures,in Avnir, D., ed., The fractal approach of heterogeneous chemistry: John Wiley & Sons, Chichester, p. 55–66.Google Scholar
  18. Kaye, B. H., 1993, Chaos and complexity: VCH, Weinheim, 593 p.Google Scholar
  19. Klappa, C. F., 1979, Lichen stromatolites: criterion for subaerial exposure and a mechanism for the formation of laminar calcrete (caliche): Jour. Sed. Pet. v. 49, no. 3, p. 387–400.Google Scholar
  20. Klappa, C. F., 1980, Brecciation textures and tepee structures in Quaternary calcrete (caliche) profiles from eastern Spain: the plant factor in their formation: Geol. Jour. v. 15, no. 2, p. 81–89.Google Scholar
  21. Krumbein, W. E., and Giele, C., 1979, Calcification in a coccoid cyanobacterium associated with the formation of desert stromatolites: Sedimentology. v. 26, no. 4, p. 593–604.Google Scholar
  22. Machette, M. N., 1985, Calcic soils of the south-western United States: Geol. Soc. America Spec. Paper 103, p. 1–21.Google Scholar
  23. Matheron, G., 1967, Eléments pour une théorie des milieux poreux: Masson, Paris, 166 p.Google Scholar
  24. Meakin, P., 1983a, Diffusion-controlled cluster formation in 2–6 dimensional space: Physical Rev., v. A27, p. 1495–1507.Google Scholar
  25. Meakin, P., 1983b, Diffusion-controlled deposition on fibers and surfaces: Physical Rev., v. A27, p. 2616–2623.Google Scholar
  26. Meakin, P., 1986, A new model for biological pattern formation: Journ. Theorical Biol., v. 118, p. 101–113.Google Scholar
  27. Meakin, P., and Tolman, S., 1989, Duffision-limited aggregation: Proc. Royal. Soc. London, v. A423, p. 133–148.Google Scholar
  28. Monty, C. L. V., 1976, The origin and development of cryptoalgal fabrics,in Walter, M. R., ed., Stromatolites: Developments in Sedimentology, v. 20, Elsevier, Amsterdam, p. 193–249.Google Scholar
  29. Mullins, W. W., and Sekerka, R. F., 1963, Morphological stability of a particle growing by diffusion of heat flow: Jour. Appl. Phys., v. 34, p. 323–329.CrossRefGoogle Scholar
  30. Perrin, B., and Tabeling, P., 1991, Les dendrites: La Recherche, v. 232, p. 656–665.Google Scholar
  31. Price, W. A., 1925, Caliche and pseudo-anticlines: Am. Assoc. Petroleum Geologists Bull., v. 9, no. 6, p. 1009–1017.Google Scholar
  32. Purser, B. H., 1980, Sédimentation et diagénèse des carbonates néritiques récents: Technip, Paris, v. 1, 367 p.Google Scholar
  33. Rabenhorst, M. C., and Wilding, L. P., 1986, Pedogenesis on the Edwards Plateau, Texas: I. Nature and continuity of parent material; II. Formation and occurrence of diagnostic subsurface horizons in a climosequence; III. New model of petrocalcic horizons: Soil Sci. Soc. America Jour., v. 50, no. 3, p. 678–699.Google Scholar
  34. Rabenhorst, M. C., West, L. T., and Wilding, L. P., 1991, Genesis of calcic and petrocalcic horizons in soils over carbonate rocks,in Nettleton, W. D., ed., Occurrence, characteristics and genesis of carbonate, gypsum and silica accumulations in soils: Soil Sci. Soc. America Spec. Publ., v. 26, p. 61–74.Google Scholar
  35. Reeves, C. C. Jr., 1976, Caliche, origin, classification morphology and uses: Estacado Books, Lubbock, Texas, 236 p.Google Scholar
  36. Russ, J. C., 1990, Computer-assisted microscopy, the measurement and analysis of images: Plenum Press, New York, 453 p.Google Scholar
  37. Sancho, C., Melendez, A., Signes, M., and Bastida, J., 1992, Chemical and mineralogical characteristics of Pleistocene caliche deposits from the central Ebro Basin, NE Spain: Clay Minerals, v. 27, no. 3, p. 293–308.Google Scholar
  38. Vanden Heuvel, R. C., 1966, The occurrence of sepiolite and attapulgite in the calcareous zone of a soil near Las Cruces, New Mexico,in Clay and Clay Minerals: Proc. 13th Conf. Clays and Clay Minerals, Pergamon Press, New York, p. 193–207.Google Scholar
  39. Verrecchia, E., 1987, Le contexte morpho-dynamique des croûtes calcaires: apport des analyses séquentielles à l'échelle microscopique: Zeit. f. Geomorph., v. 31, no. 2, p. 179–193.Google Scholar
  40. Verrecchia, E., 1992, Le rôle de la sédimentation, de l'activité biologique et de la diagénèse dans l'édification des nari-calcretes de Nazareth (Galilée, Israël): unpubl. doctorate of science dissertation, Mémoires des Sciences de la Terre, Université Pierre et Marie Curie, Paris, no. 92–17, 447 p.Google Scholar
  41. Verrecchia, E., 1994, L'origine biologique et superficielle des croûtes zonaires: Bull. Soc. Géol. de France, v. 165, p. 583–592.Google Scholar
  42. Verrecchia, E., and Freytet, P., 1987, Interférence pédogénèse-sédimentation dans les croûtes calcaires, Proposition d'une nouvelle méthode d'étude: l'analyse séquentielle,in Fédoroff, N., Bresson, L., and Courty, M. A., eds., Acetes de la VII reunion intern. de micromorphologie des sols: Assoc. Française pour l'Etude du Sol, Plaisir, p. 555–561.Google Scholar
  43. Verrecchia, E. P., and Verrecchia, K. E., 1994, Needle-fiber calcite: a critical review and a proposed classification: Jour. Sed. Res., v. A64, no. 3, p. 650–664.Google Scholar
  44. Verrecchia, E. P., Ribier, J., Patillon, M., and Rolko, K. E., 1991, Stromatolitic origin for desert laminar limecrusts—a new paleoenvironmental indicator for arid regions: Naturwissenschaften, v. 78, p. 505–507.CrossRefGoogle Scholar
  45. Vicsek, T., 1992, Fractal growth phenomena: World Scientific, Singapore, 488 p.Google Scholar
  46. Walter, M. R., 1976, Glossary of selected terms,in Walter, M. R., ed., Stromatolites: Developments in Sedimentology, v. 20, Elsevier, Amsterdam, p. 687–692.Google Scholar
  47. Watts, N. L., 1977, Pseudo-anticlines and other structures in some calcretes of Bostwana and South Africa: Earth Surf. Processes, v. 2, no. 1, p. 63–74.Google Scholar
  48. Witten, T. A., and Sanders, L. M., 1981, Diffusion-limited aggregation, a kinetic critical phenomena: Phys. Rev. Letters, v. 47, p. 1400–1403.CrossRefGoogle Scholar
  49. Witten, T. A., and Sanders, L. M., 1983, Diffusion-limited aggregation: Physical Rev., v. B27, p. 5686–5697.Google Scholar
  50. Wright, K., and Karlsson, B., 1983, Topographic quantification of non-planar localized surfaces: Journ. Microscopy, v. 130, p. 37–51.Google Scholar
  51. Wright, V. P., 1989, Terrestrial stromatolites and laminar calcretes: A review: Sedimentary Geology, v. 65, no. 1–2, p. 1–13.CrossRefGoogle Scholar
  52. Wright, V. P., 1994, Paleosols in shallow marine carbonate sequences: Earth Sci. Reviews, v. 35, no. 4, p. 367–395.CrossRefGoogle Scholar
  53. Yaalon, D. H., 1970, Parallel stone cracking, a weathering process on desert surfaces: Technol. and Econ. Bull., Bucarest, v. C18, p. 107–111.Google Scholar
  54. Yaalon, D. H., and Singer, S., 1974, Vertical variation in strength and porosity of calcrete (Nari) on chalf, Shefela, Israel, and interpretation of its origin: Jour. Sed. Pet., v. 44, no. 4, p. 1016–1023.Google Scholar
  55. Zhang, Y., and Hofmann, H. J., 1982, Precambrian stromatolites: image analysis of lamina shape: Jour. Geology, v. 90, no. 3, p. 253–268.Google Scholar
  56. Zhang, Y., and Hoffmann, L., 1992, Blue-green algal mats of the salinas in San-ya, Hai-nan Island (China): structure, taxonomic composition, and implications for the interpretation of Precambrian stromatolites: Precambrian Res., v. 56, p. 275–290.CrossRefGoogle Scholar

Copyright information

© International Association for Mathematical Geology 1996

Authors and Affiliations

  • Eric P. Verrecchia
    • 1
  1. 1.Centre des Sciences de la TerreC.N.R.S., U.R.A. 157, Université de BourgogneDijonFrance

Personalised recommendations