Skip to main content
Log in

Multifractal modeling and spatial statistics

  • Published:
Mathematical Geology Aims and scope Submit manuscript

Abstract

In general, the multifractal model provides more information about measurements on spatial objects than a fractal model. It also results in mathematical equations for the covariance function and semivariogram in spatial statistics which are determined primarily by the second-order mass exponent. However, these equations can be approximated by power-law relations which are comparable directly to equations based on fractal modeling. The multifractal approach is used to describe the underlying spatial structure of De Wijs 's example of zinc values from a sphalerite-bearing quartz vein near Pulacayo, Bolivia. It is shown that these data are multifractal instead of fractal, and that the second-order mass exponent (=0.979±0.011 for the example) can be used in spatial statistical analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Agterberg, F. P., 1994, Fractals, multifractals, and change of support,in Dimitrakopoulus, R., ed., Geostatistics for the next century: Kluwer. Dordrecht, p. 223–234.

    Google Scholar 

  • Agterberg, F. P., Cheng, Q., and Wright, D. F., 1993, Fractal modeling of mineral deposits,in Elbrond, J., and Tang, X., eds., Application of computers and operations research in the mineral industry: Proc. 24th APCOM Symposium, v. 1, Can. Inst. Mining, Metallurgy and Petroleum Eng. (Montreal), p. 43–53.

    Google Scholar 

  • Bartlett, M. S., 1966, An introduction to stochastic processes (2nd ed.): Cambridge Univ. Press, Cambridge, 362 p.

    Google Scholar 

  • Billingsley, P., 1986, Probability and measure (2nd ed.): John Wiley & Sons, New York, 622 p.

    Google Scholar 

  • Cheng, Q., 1994, Multifractal modeling and spatial analysis with GIS: Gold potential estimation in the Mitchell-Sulphurets area, northwestern British Columbia: unpubl. doctoral dissertation, Univ. Ottawa, Ottawa, 268 p.

    Google Scholar 

  • Cheng, Q., and Agterberg, F. P., 1995, Multifractal modeling and spatial point processes: Math. Geology, v. 27, no. 7, p. 831–845.

    Article  Google Scholar 

  • Cheng, Q., Agterberg, F. P., and Ballantyne, S. B., 1994, The separation of geochemical anomalies from background by fractal methods: Jour. Geochemical Exploration, v. 51, no. 2, p. 109–130.

    Article  Google Scholar 

  • Csörgö, M., and Révész, P., 1981, Strong approximations in probability and statistics: Academic Press, New York, 284 p.

    Google Scholar 

  • De Wijs, H. J., 1951, Statistics of ore distribution: Geologie en Mijnbouw, v. 13, no. 8, p. 365–375.

    Google Scholar 

  • Evertsz, C. J. G., and Mandelbrot, B. B., 1992, Multifractal measures,in Peitgen, H.-O., Jürgens, H., and Saupe, D., eds., Chaos and fractals: Springer Verlag, New York, p. 922–953.

    Google Scholar 

  • Fairfield-Smith, H., 1938, An empirical law describing heterogeneity in the yields of agricultural crops: Jour. Agricultural Sci., v. 28, no. 1, p. 1–23.

    Google Scholar 

  • Feder, J., 1988, Fractals: Plenum, New York. 283 p.

    Google Scholar 

  • Hentschel, H. G. E., and Procaccia, I., 1983, The infinite number of generalized dimensions of fractals and strange attractors: Physica, v. 8, pt. D, p. 435–444.

    Google Scholar 

  • Mandelbrot, B. B., 1983, The fractal geometry of nature (updated and augmented edition): W.H. Freeman and Company, New York, 468 p.

    Google Scholar 

  • Mandelbrot, B. B., and Evertsz, C. J. G., 1991, Exactly self-similar left-sided multifractals,in Bunde, A., and Havlin, S., eds., Fractals and disordered systems: Springer Verlag, Heidelberg, p. 323–344.

    Google Scholar 

  • Mandelbrot, B. B., and Van Ness, J. W., 1968, Fractional brownian motions, fractional noises and applications: SIAM Review, v. 10, no. 4, p. 422–437.

    Article  Google Scholar 

  • Matheron, G., 1962, Traité de Géostatistique Appliquée. Mém. Bur. Rech. Géol. Minières, v. 14, p. 1–333.

    Google Scholar 

  • Meneveau, C. and Sreenivasan, K. R., 1987, Simple multifractal cascade model for fully developed turbulence: Phys. Review Letters, v. 59, no. 13, p. 1424–1427.

    Article  Google Scholar 

  • Rose, C. D., 1983, Variances in sampling streams of coal: Jour. Testing and Evaluation, v. 11, p. 320–330.

    Google Scholar 

  • Rose, C. D., 1992, A fractal model for sampling coal, ores, and other natural populations: Jour. Coal Quality, v. 11, no. 1–2, p. 6–13.

    Google Scholar 

  • Stanley, H. E., and Meakin, P., 1988, Multifractal phenomena in physics and chemistry: Nature, v. 335, no. 6189, p. 405–409.

    Article  Google Scholar 

  • Taqqu, M. S., 1988,in Kotz, S., and Johnson, N., eds., Self-similar processes: Ency. of Stat. Sci., v. 8: John Wiley & Sons, New York, p. 352–357.

    Google Scholar 

  • Yaglom, A. M., 1966, The influence of fluctuations in energy dissipation on the shape of turbulence characteristics in the inertial interval: Soviet Physics-Doklady, v. 11, p. 26–29.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cheng, Q., Agterberg, F.P. Multifractal modeling and spatial statistics. Math Geol 28, 1–16 (1996). https://doi.org/10.1007/BF02273520

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02273520

Key words

Navigation