Advertisement

Human Genetics

, Volume 94, Issue 1, pp 91–94 | Cite as

A human cDNA coding for the Leydig insulin-like peptide (Ley I-L)

  • E. Burkhardt
  • I. M. Adham
  • U. Hobohm
  • D. Murphy
  • C. Sander
  • W. Engel
Short Communication

Abstract

cDNA clones for the human Leydig insulin-like peptide (Ley I-L) have been isolated and characterized. The nucleotide sequence of the 743-bp cDNA includes an incomplete 7-bp 5′-noncoding region, an open reading frame of 393 bp, and a 343-bp 3′-noncoding region. By primer extension analysis, the transcription start site was determined as being 14-bp upstream of the translation start site. The underlying gene is expressed in the testis but not in other organs. From the cDNA sequence, it can be deduced that the Ley I-L protein is synthesized as a 131-amino-acid (aa) preproprotein and that it contains a 24-aa signal peptide. Comparison of the pro Ley I-L protein with members of the insulin-like hormone superfamily predicts that the biologically active hormone, after proteolytic processing of the C peptide, consists of a 31-aa long B chain and a 26-aa long A chain, and that it has a molecular weight of 6.25 kDa.

Keywords

Peptide Signal Peptide cDNA Clone Start Site Transcription Start Site 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adham IM, Burkhardt E, Benahmed M, Engel W (1993) Cloning of a cDNA for a novel insulin-like peptide of the testicular Leydig cells. J Biol Chem 268:26668–26672Google Scholar
  2. Aviv H, Leder P (1972) Purification of biologically active globin messenger RNA by chromatography oligo thymidylic acid-cellulose. Proc Natl Acad Sci USA 69:1408–1412Google Scholar
  3. Bell GI, Swain WF, Pictet R, Cordell B, Goodman HM, Rutter WJ (1979) Nucleotide sequence of a cDNA clone encoding human preproinsulin. Nature 282:525–527Google Scholar
  4. Bell GI, Merryweather JP, Sanchez-Pescador R, Stempien MM, Priestley L, Scott J, Rall LB (1984) Sequence of a cDNA clone encoding human preproinsulin-like growth factor II. Nature 310:775–777Google Scholar
  5. Bellvé AR, Zheng W (1989) Growth factors as autocrine and paracrine modulators of male gonadal functions. J Reprod Fertil 85:771–793Google Scholar
  6. Bently G, Dodson E Dodson G, Hodgkin D Mercola DA (1976) Structure of insulin in 4-zinc insulin. Nature 261:166–168Google Scholar
  7. Benton WD, Davis RW (1977) Screening λgtll recombinant clones by hybridization to single plaques in situ. Science 196:180–182Google Scholar
  8. Blundell TL, Humbel RE (1980) Hormone families: pancreatic hormones and homologous growth factors. Nature 287:781–787Google Scholar
  9. Blundell TL, Dodson GG, Hodgkin DC, Mercola DA (1972) Insulin: the structure in the crystal and its reflection in chemistry and biology. Adv Protein Chem 26:279–402Google Scholar
  10. Chirgwin JM, Przybyla AE, MacDonald RJ, Rutter WJ (1979) Isolation of biologically active RNA from sources enriched in ribonuclease. Biochemistry 18:5294–5299Google Scholar
  11. Domenjoud L, Nussbaum G, Adham IM, Greeke G, Engel W (1990) Genomic sequence of human protamines whose genes, PRM1 and PRM2, are clustered. Genomics 8:127–133Google Scholar
  12. Dull TJ, Alane G, Hayflick JS, Ullrich A (1984) Insulin-like growth factor II precursor gene organization in relation to insulin gene family. Nature 310:777–781Google Scholar
  13. Feinberg AP, Vogelstein B (1983) A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal Biochem 132:6–13Google Scholar
  14. Hanauer A, Levin M, Heilig R, Daegelon D, Kahn A, Mendel JL (1983) Isolation and characterization of cDNA clones for human skeletal muscle alpha-actin. Nucleic Acids Res 11:3505–3515Google Scholar
  15. Hudson P, John M, Grawford R, Haralambidis J, Scanlon D, Gorman J, Tregear G, Shine J, Niall H (1984) Relaxin gene expression in human ovaries and the predicted structure of a human preprorelaxin by analysis of cDNA clones. EMBO J 3:2333–2339Google Scholar
  16. Jansen M, Schaik FMA van, Ricker AT, Bullock B, Woods DE, Gabbay KH, Nussbaum AL, Sussenbach JS, Brande JL van den (1983) Sequence of cDNA encoding human insulin-like growth factor I precursor. Nature 306:609–611Google Scholar
  17. Kozak M (1989) The scanning model for translation: an update. J Cell Biol 108:229–241Google Scholar
  18. Nicol DSHW, Smith LF (1960) The amino acid sequence of human insulin. Nature 181:483–485Google Scholar
  19. Sambrook I, Fritsch EF, Maniatis T (1989) Molecular cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor Laboratory, Cold Spring Harbor, NYGoogle Scholar
  20. Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74:5463–5467Google Scholar
  21. Skinner MK (1991) Cell-cell interactions in the testis. Endocrinol Rev 12:45–47Google Scholar
  22. Söder O, Pöllänen P, Syed V, Holst M, Granholm K, Arver S, Euler M von, Gustafsson K, Fröysa B, Parvinen M, Ritzen EM (1989) Mitogenic factors in the testis. In: Serio M (ed) Perspectives in andrology, vol 53. Raven Press, New York, pp 215–225Google Scholar
  23. Söder O, Bang P, Wahab A, Parvinen M (1992) Insulin-like growth factors selectively stimulate spermatogonial, but not meiotic, deoxyribonucleic acid synthesis during rat spermatogenesis. Endocrinology 131:2344–2350Google Scholar

Copyright information

© Springer-Verlag 1994

Authors and Affiliations

  • E. Burkhardt
    • 1
  • I. M. Adham
    • 1
  • U. Hobohm
    • 2
  • D. Murphy
    • 1
  • C. Sander
    • 2
  • W. Engel
    • 1
  1. 1.Institut für Humangenetik der Universität GödttingenGöttingenGermany
  2. 2.European Molecular Biology Laboratory HeidelbergGermany

Personalised recommendations