The Histochemical Journal

, Volume 28, Issue 11, pp 747–758 | Cite as

5-HT receptors in mammalian brain: receptor autoradiography andin situ hybridization studies of new ligands and newly identified receptors

  • G. Mengod
  • M. T. Vilaró
  • A. Raurich
  • J. F. López-Giménez
  • R. Cortés
  • J. M. Palacios
Papers

Summary

In recent years the family of mammalian serotonin receptors has grown to 14 different subtypes, characterized by pharmacological or molecular biological techniques. In parallel, new ligand molecules have been developed for their study. However, selective ligands are not yet available to study every one of them. In addition the degree of selectivity of ligands, hitherto regarded as specific for a particular receptor subtype has been called in question by their affinities for newly discovered receptors. Consequently, a re-evaluation of past ligand receptor autoradiography work is necessary in view of the redefined receptor profiles of these ligands, and the introduction of newly developed ligands. A further difficulty for the characterization of these receptors is the absence of selective antagonist ligands which, for some of the subtypes, have become available only recently. In an attempt to overcome these difficulties we have combinedin situ hybridization histochemistry and receptor ligand autoradiography to study the regional and cellular localization of several serotonin receptors in the rodent brain. In addition, for some receptors, we have expanded these studies to primates, including humans.

We have found that the distribution of 5-HT1A receptors in monkey brain, labelled with the agonist3H-8-OH-DPAT and the antagonist3H-WAY 100635 was very similar at the levels examined, and corresponded well with that observed for the cells containing mRNA coding for this receptor, confirming the somatodendritic localization of 5-HT1A receptors in monkey brain. The labelling conditions to visualize 5-HT1F receptors in guinea pig brain, namely3H-sumatriptan in the presence of 10−8m 5-CT to block 5-HT1D receptors, are suitable for visualizing this receptor, since the results agreed with those observed byin situ hybridization. By using3H-ketanserin and3H-mesulergine in parallel within situ hybridization using the corresponding oligonucleotides, we were able to show that these ligands label respectively 5-HT2A and 5-HT2C binding sites in monkey brain. 5-HT4 receptors were localized in the brain of several species including humans by using125I-SB 207710.In situ hybridization experiments performed in guinea pig confirmed that 5-HT4 receptors are localized on the terminals of the striatopallidal and striatonigral projections. 5-HT7 binding sites were labelled in rat and guinea pig brains by incubating with3H-5-CT in the presence of 100 μm WAY 100135 and 250 μm GR 127935; the distribution obtained in both species agreed, in general, with that of the corresponding mRNA coding for them. These results are an illustration of the understanding of our current knowledge of the chemical neuroanatomy of the mammalian 5-HT system.

Keywords

Serotonin Receptor Monkey Brain Molecular Biological Technique Receptor Profile Receptor Autoradiography 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abramowski, D., Rigo, M., Duc, D., Hoyer, D. &Staufenbiel, M. (1995) Localization of the 5-hydroxytryptamine2C receptor protein in human and rat brain using specific antisera.Neuropharmacology 34, 1635–45.CrossRefPubMedGoogle Scholar
  2. Adham, N., Kao, H.-T., Schechter, L. E., Bard, J., Olsen, M., Urquhart, D., Durkin, M., Hartig, P. R., Weinshank, R. L. &Branchek, T. A. (1993) Cloning of another human serotonin (5-HT1F): a fifth 5-HT1 receptor subtype coupled to the inhibition of adenylate cyclase.Proc. Natl. Acad. Sci. USA 90, 408–12.PubMedGoogle Scholar
  3. Amlaiky, N., Ramboz, S., Boschert, U., Plassat, J.-L. &Hen, R. (1992) Isolation of a mouse “5HT1E-like” serotonin receptor expressed predominantly in hippocampus.J. Biol. Chem. 267, 19761–4.PubMedGoogle Scholar
  4. Brown, A. M., Young, T. J., Patch, T. L., Cheung, C. W., Kaumann, A. J., Gaster, L. & King, F. D. (1993) [125I]-SB 207710, a potent, selective radioligand for 5-HT4 receptors.Br. J. Pharmacol. 110, 10P.Google Scholar
  5. Bruinvels, A. T., Branchek, T. A., Landwehrmeyer, B., Mengod, G., Hoyer, D. &Palacios, J. M. (1994) Localisation of 5-HT1B, 5-HT1Dα, 5-HT1E and 5-HT1F receptor messenger RNA in rodent and primate brain.Neuropharmacology 33, 367–86.CrossRefPubMedGoogle Scholar
  6. Eglen, R. M., Wong, E. H. F., Dumuis, A. &Bockaert, J. (1995) Central 5-HT4 receptors.Trends Pharmacol. Sci. 16, 391–7.CrossRefPubMedGoogle Scholar
  7. Foguet, M., Hoyer, D., Pardo, L. A., Parekh, A., Kluxen, F. W., Kalkman, H. O., Stühmer, W. &Lübbert, H. (1992a) Cloning and functional characterization of the rat stomach fundus serotonin receptor.EMBO J. 9, 3481–7.Google Scholar
  8. Foguet, M., Nguyen, H., Le, H. &Lübbert, H. (1992b) Structure of the mouse 5-HT1C, 5-HT2 and stomach fundus serotonin receptor genes.NeuroReport 3, 345–8.PubMedGoogle Scholar
  9. Gerald, C., Adham, N., Hung-Teh, K., Olsen, M. A., Laz, T. M., Schechter, L. E., Bard, J. A., Vaysse, P. J.-J., Hartig, P. R., Branchek, T. A. &Weinshank, R. L. (1995) The 5-HT4 receptor: molecular cloning and pharmacological characterization of two splice variants.EMBO J. 14, 2806–15.PubMedGoogle Scholar
  10. Grossman, C. J., Kilpatrick, G. J. &Bunce, K. T. (1993) Development of a radioligand binding assay for 5-HT4 receptors in guinea-pig and rat brain.Br. J. Pharmacol. 109, 618–24.PubMedGoogle Scholar
  11. Hoyer, D., Clarke, D. E., Fozard, J. R., Hartig, P. R., Martin, G. R., Mylecharane, E. J., Saxena, P. R. &Humphrey, P. P. A. (1994) VII. International Union of Pharmacology classification of receptors for 5-hydroxytryptamine (serotonin).Pharmacol. Rev. 46, 157–203.PubMedGoogle Scholar
  12. Humphrey, P. P. A., Hartig, P. &Hoyer, D. (1993) A proposed new nomenclature for 5-HT receptors.Trends Pharmacol. Sci. 14, 233–6.CrossRefPubMedGoogle Scholar
  13. Jakeman, L. B., To, Z. P., Eglen, R. M., Wong, E. H. F. &Bonhaus, D. W. (1994) Quantitative autoradiography of 5-HT4 receptors in brains of three species using two structurally distinct radioligands, [3H]GR113808 and [3H]BIMU-1.Neuropharmacology 33, 1027–38.CrossRefPubMedGoogle Scholar
  14. Khawaja, X. (1995) Quantitative autoradiographic characterization of the binding of [3H]-WAY-100635, a selective 5-HT1A receptor antagonist.Brain Res. 673, 217–25.CrossRefPubMedGoogle Scholar
  15. Kia, H. K., Miquel, M. C., Brisorgueil, M. J., Daval, G., Riad, M., Elmestikawy, S., Hamon, M. &Vergé, D. (1996) Immunocytochemical localization of serotonin 1A receptors in the rat central nervous system.J. Comp. Neurol. 365, 289–305.CrossRefPubMedGoogle Scholar
  16. Kursar, J. D., Nelson, D. L., Wainscott, D. B., Cohen, M. L. &Baez, M. (1992) Molecular cloning, functional expression, and pharmacological characterization of a novel serotonin receptor (5-hydroxytryptamine2F) from rat stomach fundus.Mol. Pharmacol. 42, 549–57.PubMedGoogle Scholar
  17. Kursar, J. D., Nelson, D. L., Wainscott, D. B. &Baez, M. (1994) Molecular cloning, functional expression, and mRNA tissue distribution of the human 5-hydroxytryptamine2B receptor.Mol. Pharmacol. 46, 227–37.PubMedGoogle Scholar
  18. Langlois, X., Gérard, C., Darmon, M., Chauveau, J., Hamon, M. &El Mestikawy, S. (1995) Immunolabeling of the central serotonin 5-HT1Dβ receptors in the rat, mouse, and guinea pig with a specific anti-peptide antiserum.J. Neurochem. 65, 2671–81.PubMedGoogle Scholar
  19. Lovenberg, T. W., Baron, B. M., De Lecea, L., Miller, J. D., Prosser, R. A., Rea, M. A., Foye, P. E., Racke, M., Slone, A. L., Siegel, B. W., Danielson, P. E., Sutcliffe, J. G. &Erlander, M. G. (1993a) A novel adenylyl cyclase-activating serotonin receptor (5-HT7) implicated in the regulation of mammalian circadian rhythms.Neuron 11, 449–58.CrossRefPubMedGoogle Scholar
  20. Lovenberg, T. W., Erlander, M. G., Baron, B. M., Racke, M., Slone, A. L., Siegel, B. W., Craft, C. M., Burns, J. E., Danielson, P. E. &Sutcliffe, J. G. (1993b) Molecular cloning and functional expression of 5-HT1E-like rat and human 5-hydroxytryptamine receptor genes.Proc. Natl. Acad. Sci. USA 90, 2184–8.PubMedGoogle Scholar
  21. Matthes, H., Boschert, U., Amlaiky, N., Grailhe, R., Plassat, J. L., Muscatelli, F., Mattei, M. G. &Hen, R. (1992) Mouse 5-hydroxytryptamine5A and 5-hydroxytryptamine5B receptors define a new family of serotonin receptors: cloning, functional expression, and chromosomal localization.Mol. Pharmacol. 43, 313–19.Google Scholar
  22. Mengod, G., Le, H., Nguyen, H., Lübbert, H., Waeber, C. &Palacios, J. M. (1990) The distribution and cellular localization of the mRNA for the 5-HT1C receptor in the rodent brain examined by in situ hybridization. Comparison with receptor binding distribution.Neuroscience 35, 577–91.CrossRefPubMedGoogle Scholar
  23. Palacios, J.M., Mengod, G. &Hoyer, D. (1993) Brain serotonin receptor subtypes: radioligand binding, second messengers, ligand autoradiography, andin situ hybridization histochemistry.Meth. Neurosci. 12, 238–60.Google Scholar
  24. Palacios, J. M., Raurich, A., Mengod, G., Hurt, S. D. &Cortés, R. (1996) Autoradiographic analysis of 5-HT receptor subtypes labeled by3H-5-CT (3H-5-carboxamidotryptamine).Behav. Brain Res. 295, 271–4.Google Scholar
  25. Pazos, A. &Palacios, J. M. (1985a) Quantitative autoradiographic mapping of serotonin receptors in the rat brain. I. Serotonin-1 receptors.Brain Res. 346, 205–30.PubMedGoogle Scholar
  26. Pazos, A. &Palacios, J. M. (1985b) Quantitative autoradiographic mapping of serotonin receptors in the rat brain. II. Serotonin-2 receptors.Brain Res. 346, 231–49.PubMedGoogle Scholar
  27. Pompeiano, M., Palacios, J. M. &Mengod, G. (1992) Distribution and cellular localization of mRNA coding for 5-HT1A receptor in the rat brain: correlation with receptor binding.J. Neurosci. 12, 440–53.PubMedGoogle Scholar
  28. Pompeiano, M., Palacios, J. M. &Mengod, G. (1994) Distribution of the serotonin 5-HT2 receptor family mRNAs: comparison between 5-HT2A and 5-HT2C receptors.Mol. Brain Res. 23, 163–78.CrossRefPubMedGoogle Scholar
  29. Reynolds, G. P., Mason, S. L., Meldrum, A., De Keczer, S., Parnes, H., Eglen, R. M. &Wong, E. H. F. (1995) 5-hydroxytryptamine (5-HT4) receptors inpost mortem human brain tissue: distribution, pharmacology and effects of neurodegenerative diseases.Br. J. Pharmacol. 114, 993–8.PubMedGoogle Scholar
  30. Ruat, M., Traiffort E., Arrang, J.-M., Tardivel-Lacombe, J., Diaz, J., Leurs, R. &Schwartz, J.-C. (1993) A novel rat serotonin (5-HT6) receptor: molecular cloning, localization and stimulation of cAMP accumulation.Biochem. Biophys. Res. Commun. 193, 268–76.CrossRefPubMedGoogle Scholar
  31. Sotelo, C., Cholley, B., Mestikawy, S. E., Gozlan, H. &Hamon, M. (1990) Direct immunohistochemical evidence of the existence of 5-HT1A autoreceptors on serotoninergic neurons in the midbrain raphe nuclei.Eur. J. Neurosci. 2, 1144–54.PubMedGoogle Scholar
  32. Vilaró, M. T., Wiederhold, K.-H., Palacios, J. M. &Mengod, G. (1992) Muscarinic M2 receptor mRNA expression and receptor binding in cholinergic and non-cholinergic cells in the rat brain: A correlative study using in situ hybridization histochemistry and receptor autoradiography.Neuroscience 47, 367–93.CrossRefPubMedGoogle Scholar
  33. Vilaró, M. T., Cortés, R., Gerald, C., Branchek, T. A., Palacios, J. M. & Mengod, G. Localization of 5-HT4 receptor mRNA in rat brain by in situ hybridization histochemistry.Mol. Brain Res. In press.Google Scholar
  34. Waeber, C. &Moskowitz, M. A. (1995a)3H-sumatriptan labels both 5-HT1D and 5-HT1F receptor binding sites in the guinea pig brain: an autoradiographic study.Naunyn-Schmiedeberg's Arch. Pharmacol. 352, 263–75.CrossRefGoogle Scholar
  35. Waeber, C. &Moskowitz, M. A. (1995b) Autoradiographic visualization of3H-5-carboxamidotryptamine binding sites in the guinea pig and rat brain.Eur. J. Pharmacol. 283, 31–46.CrossRefPubMedGoogle Scholar
  36. Waeber, C. &Palacios, J. M. (1994) Binding sites for 5-hydroxytryptamine-2 receptor agonists are predominantly located in striosomes in the human basal ganglia.Mol. Brain. Res. 24, 199–209.CrossRefPubMedGoogle Scholar
  37. Waeber, C., Sebben, M., Grossman, C. J., Javoy-Agid, F., Bockaert, J. &Dumuis, A. (1993) [3H]GR113808 labels 5-HT4 receptors in the human and guinea-pig brain.NeuroReport 4, 1239–42.PubMedGoogle Scholar
  38. Waeber, C., Sebben, M., Nieoullon, J., Bockaert, J. &Dumuis, A. (1994) Regional distribution and ontogeny of 5-HT4 binding sites in rodent brain.Neuropharmacology 33, 527–41.CrossRefPubMedGoogle Scholar
  39. Ward, R. P., Hamblin, M. W., Lachowicz, J. E., Hoffman, B. J., Sibley, D. R. &Dorsa, D. M. (1995) Localization of serotonin subtype 6 receptor messenger RNA in the rat brain byin situ hybridization histochemistry.Neuroscience 64, 1105–11.CrossRefPubMedGoogle Scholar

Copyright information

© Chapman & Hall 1996

Authors and Affiliations

  • G. Mengod
    • 1
  • M. T. Vilaró
    • 1
  • A. Raurich
    • 1
  • J. F. López-Giménez
    • 1
  • R. Cortés
    • 1
  • J. M. Palacios
    • 1
  1. 1.Department of NeurochemistryInstituto de Investigaciones Biomédicas de Barcelona, CSICBarcelonaSpain

Personalised recommendations