, Volume 42, Issue 7–8, pp 389–395 | Cite as

Comparison and quantification of chromatographic retention mechanisms on three stationary phases using structure-retention relationships

  • K. Azzaoui
  • L. Morin-Allory


The mechanism of retention in HPLC using a non-polar solvent with a very low content of various polar modifiers as mobile phase and three stationary phases is studied.

The results of preceding work are generalised to the role of each polar modifier. This allows quantification of the interaction between stationary phases and polar modifier. Moreover, by the introduction of physicochemical descriptors of eluents it is possible to obtain for each stationary phase a simple equation correlating retention of solutes to calculated descriptors of solutes and eluents.

The mechanism of retention is discussed with these new general equations. The main qualitative result is proof of a direct link between the polar modifier and polar groups of the stationary phases, This link plays the major role in differences of retention.

Key Words

Column liquid chromatography Structure-retention relationship Polar modifiers Molecular modelling Retention mechanism 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    R. Kaliszan, J. Chromatogr.656, 417 (1993).Google Scholar
  2. [2]
    A. N. Nasal, M. Sznitowska, A. Bucinski, R. Kaliszan, J. Chromatogr.692, 83 (1995).Google Scholar
  3. [3]
    K. Azzaoui, L. Morin-Allory, Chromatographia40, 690 (1995).Google Scholar
  4. [4]
    B. Walczak, L. Morin-allory, J. R. Chrétien, M. Lafosse, M. Dreux, Chemometr. Intell. Lab. Syst.1, 79 (1986).Google Scholar
  5. [5]
    B. Walczak, M. Dreux, J. R. Chrétien, Chromatographia31, 575 (1991).Google Scholar
  6. [6]
    B. Walczak, J. R. Chrétien, M. Dreux, L. Morin-Allory, M. Lafosse, Chemometr. Intell. Lab. Syst.1, 177 (1987).Google Scholar
  7. [7]
    PRO-QUANTUM. V1.33. Oxford Molecular Ltd, 1994.Google Scholar
  8. [8]
    J. J. P. Stewart, J. Comput.-Aided Mol. Design.4, 1 (1990).Google Scholar
  9. [9]
    W. Heiden, M. Schenkrich, J. Brickmann, J. Comput.-Aided Mol. Design.4, 255 (1990).Google Scholar
  10. [10]
    A. K. Ghose, G. M. Crippen, J. Comput. Chem.7, 565, (1986).Google Scholar
  11. [11]
    TSAR V2.31. Oxford Molecular Ltd, 1995.Google Scholar
  12. [12]
    B. C. Cupid, J. K. Nicholson, P. Davis, R. J. Ruane, I. D. Wilson, R. C. Glen, V. S. Rose, C. R. Beddell, J. C. Lindon, Chromatographia37, 242 (1993).Google Scholar
  13. [13]
    R. Kaliszan “Quantitative Structure-Chromatographic Relationships”, John Wiley, Chichester, 1987, p. 1–137.Google Scholar
  14. [14]
    J. J. Burger, E. Tomlinson, anal, Proc.19, 126 (1982).Google Scholar
  15. [15]
    L. Nondek, R. Ponec, J. Chromatogr.294, 175 (1984).Google Scholar
  16. [16]
    L. Nondek, HRC(CC.8, 302 (1985).Google Scholar
  17. [17]
    L. Nondek, M. Minarik, J. Chromatogr.324, 261 (1985).Google Scholar
  18. [18]
    S. Héron, A. Tchapla, J. Chromatogr.556, 219 (1991).Google Scholar

Copyright information

© Friedr. Vieweg & Sohn Verlagsgesellschaft mbH 1996

Authors and Affiliations

  • K. Azzaoui
    • 1
  • L. Morin-Allory
    • 1
  1. 1.Laboratoire de Chimie Bioorganique et Analytique, URA CNRS 499Université d'OrléansOrléans Cedex 2France

Personalised recommendations