Evolutionary Ecology

, Volume 3, Issue 2, pp 150–156 | Cite as

The influence of a positive correlation between clutch size and offspring fitness on the optimal offspring size

  • Mark A. McGinley


The effect is modeled of a positive relationship between clutch size and offspring fitness on the optimal investment in offspring. In species which meet the assumptions of the model, the model predicts a positive correlation between maternal resource level and offspring size. If larger mothers are able to allocate more resources to offspring, then the model would also predict a positive correlation between maternal size and offspring size when the assumptions of the model are met. Thus, this model may help explain both among and within individual variation in offspring size. When offspring are produced in groups and the number of offspring killed per clutch is limited by predator satiation, offspring in larger clutches may experience a higher probability of survival. Such a life style may be found in animals such as sea turtles. Offspring size is positively correlated with maternal size in some members of this group.


Optimal investment in offspring optimal offspring size offspring size variation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Begon, M. and Parker, G. A. (1986) Should egg size and clutch size decrease with age?Oikos 47, 293–302.Google Scholar
  2. Congdon, J. D., Gibbons, J. W. and Greene, J. L. (1983) Parental investment in the chicken turtle (Dermochelys reticulata).Ecology 64, 419–25.Google Scholar
  3. Congdon, J. D. and Gibbons, J. W. (1987) Morphological constraint on egg size: a challenge to optimal egg size theory?Pr. Nat. Acad. Sci. (US) 84, 4145–7.Google Scholar
  4. Crump, M. L. and Kaplan R. H. (1979) Clutch energy partitioning of tropical tree frogs (Hylidae).Copeia 1979, 626–35.Google Scholar
  5. Herried, C. F. II and Kinney, S. (1966) Survival of Alaskan woodfrog (Rana sylvtica) larvae.Ecology 47, 1039–41.Google Scholar
  6. Hirth, H. F. and Ogren L. H. (1987) Some aspects of the ecology of the leatherback turtle (Dermochelys coriacea) at Laguna Jalova, Costa Rica.Nat. Marine Fish. Serv. Rep. 56, 1–14.Google Scholar
  7. Honig, J. (1966) Uber eizahlen vonRana temporari.Salamandra 2, 70–2.Google Scholar
  8. Howard, R. D. (1978) The influence of male-defended oviposition and early embryo mortality in bullfrogs.Ecology 59, 789–98.Google Scholar
  9. Licht, L. E. (1968) Unpalatability and toxicity of toad eggs.Herpetologia 24, 93–8.Google Scholar
  10. Licht, L. E. (1969) Palatability ofRana andHyla eggs.Amer. Midl. Natur. 82, 296–8.Google Scholar
  11. Licht, L. E. (1974) Survival of embryos, tadpoles, and adults of the frogsRana aurora aurora andRana pretiosa pretiosa sympatric in southwest British Columbia.Canad. J. Zool. 52, 613–27.Google Scholar
  12. Maynard Smith, J., Burian, R., Kauffman, S., Campbell, P. J., Goodwin, B., Lande, R., Raup, D. and Wolpert, L. (1985) Developmental constraints and evolution.Q. Rev. Biol. 60, 265–87.CrossRefGoogle Scholar
  13. McAllister, W. H. (1962) Variation inRana pipiens Schreber in Texas.Amer. Midl. Natur. 67, 334–63.Google Scholar
  14. McGinley, M. A. and Charnov, E. L. (1988) Multiple resources and the optimal size and number of offspring.Evol. Ecol. 2, 77–84.CrossRefGoogle Scholar
  15. McGinley, M. A., Temme, D. H. and Geber, M. A. (1987) Parental investment in variable environments: theoretical and empirical considerations.Amer. Natur. 130, 370–98.CrossRefGoogle Scholar
  16. Parker, G. A. and Begon, M. (1986) Optimal egg size and clutch size: effects of environment and maternal phenotype.Amer. Natur. 128, 573–92.CrossRefGoogle Scholar
  17. Ryan, M. J. (1978) A thermal property of theRana catesbeiana (Amphibia, Anura, Ranidae) egg mass.J. Herp. 12, 247–8.Google Scholar
  18. Sargent, R. C., Taylor, P. D. and Gross, M. R. (1987) Parental care and the evolution of egg size in fishes.Amer. Natur. 129, 32–46.CrossRefGoogle Scholar
  19. Smith, C. C. and Fretwell, S. D. (1974) The optimal balance between size and number of offspring.Amer. Natur. 108, 499–506.CrossRefGoogle Scholar
  20. Travis, J. (1983) Variation in development patterns of larval anurans in temporary ponds. I. Persistent variation within aHyla gratiosa population.Evolution 37, 496–512.Google Scholar

Copyright information

© Chapman and Hall Ltd. 1989

Authors and Affiliations

  • Mark A. McGinley
    • 1
  1. 1.Department of Ecology and Behavioral BiologyUniversity of MinnesotaMineapolisU.S.A.

Personalised recommendations