Advertisement

Evolutionary Ecology

, Volume 4, Issue 2, pp 157–171 | Cite as

Evolution of semelparity in Mount Kenya lobelias

  • Truman P. Young
Papers

Summary

Two closely related long-lived rosette plants in the genusLobelia occur on alpine Mount Kenya.Lobelia telekii grows in drier sites and is semelparous (dies after first reproduction).Lobelia keniensis grows in wetter sites and is iteroparous (flowers repeatedly). I used long-term data to evaluate two related models of the evolution of semelparity (‘reproductive effort’ and ‘demographic’), and found evidence to support only one. Eight years of population data indicate that a simple mathematical model accurately describes the demographic conditions that have favoured the evolution of semelparity. In drier sites,Lobelia individuals flower so infrequently and suffer such high mortality between reproductive episodes that the probability of future reproduction is outweighed by the greater fecundity associated with semelparity.

Keywords

semelparity life history Lobelia reproductive effort demography 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abrahamson, W. G. (1979) Patterns of resource allocation in wildflower populations of fields and woods.Amer. J. Bot. 66, 71–9.Google Scholar
  2. Acker, C. L. (1982a) Regulation of flower, fruit and seed production by a monocarpic perennial,Yucca whipplei.J. Ecol. 70, 357–72.Google Scholar
  3. Acker, C. L. (1982b) Spatial and temporal dispersal patterns of pollinators and their relationship to the flower strategy ofYucca whipplei (Agavaceae).Oecologia 54, 243–52.Google Scholar
  4. Bell, G. (1976) On reproducing more than once.Amer. Natur. 110, 57–77.Google Scholar
  5. Bell, G. (1980) The costs of reproduction and their consequences.Amer. Natur. 116, 45–76.Google Scholar
  6. Charnov, E. and Schaffer, W. M. (1973) Life history consequences of natural selection: Cole's result revisited.Amer. Natur. 107, 791–3.Google Scholar
  7. Fone, A. L. (1989) A comparative study of annual and perennialHypochoeris (Asteraceae).J. Ecol. 77, 495–508.Google Scholar
  8. Gaines, M. S., Vogt, K. J., Hamrick, J. L. and Calwell J. (1974) Reproductive strategies and growth patterns in sunflowers (Helianthus).Amer. Natur. 108, 889–94.Google Scholar
  9. Leibengut, C. (1986)Hydrogeological map of Mount Kenya. African Studies Series, Vol. A3. Geographica Bernesia, Berne.Google Scholar
  10. Marshall, D. L., Fowler, N. L. and Levin, D. A. (1985) Plasticity in yield components in natural populations of three species ofSesbania.Ecology 66, 753–61.Google Scholar
  11. Michaels, H. J. and Bazzaz, F. A. (1989) Individual and population responses of sexual and apomictic plants to environmental gradients.Amer. Natur. 134, 190–207.Google Scholar
  12. Orzack, S. H. and Tuljapurkar, S. (1989) Population dynamics in variable environments VII. The demography and evolution of semelparity.Amer. Natur. 133, 901–23.Google Scholar
  13. Paige, K. N. and Whitham, T. G. (1987) Flexible life history traits: shifts by scarlet gilia in response to pollinator abundance.Ecology 68, 1691–5.Google Scholar
  14. Pitelka, L. F. (1977) Energy allocation in annual and perennial lupines (Lupinus: Leguminosae).Ecology 58, 1055–65.Google Scholar
  15. Primack, R. (1979) Reproductive effort in annual and perennial species ofPlantago (Plantaginaceae).Amer. Natur. 114, 51–62.Google Scholar
  16. Pyke, G. H. (1981) The evolution of inflorescence size and height in the waratah (Telopea speciosissima): the difficulty of interpreting correlations between plant traits and fruit set. InPollination and Evolution. (J. A. Armstrong, J. M. Powell and A. J. Richards, eds) pp. 91–4. Royal Botanical Gardens, Sydney.Google Scholar
  17. Salisbury, E. J. (1942)The Reproductive Capacity of Plants 244 pp. G. Bell and Sons, London.Google Scholar
  18. Sano, Y., Morishima, H. and Oka, H. (1980) Intermediate perennial-annual populations ofOryza perennis found in Thailand and their evolutionary significance.Bot. Mag. Tokyo 93, 291–305.Google Scholar
  19. Sano, Y. and Morishima, H. (1982) Variation in resource allocation and adaptive strategy of a wild rice,Oryza perennis Meunch.Bot. Gaz. 143, 518–23.Google Scholar
  20. Schaffer, W. M. (1974) Selection for optimal life histories: the effects of age structure.Ecology 55, 291–303.Google Scholar
  21. Schaffer, W. M. and Gadgil, M. V. (1975) Selection for optimal life histories in plants. InEcology and Evolution of Communities (M. L. Cody and J. M. Diamond, eds) Belknap Press, Cambridge, Massachusetts.Google Scholar
  22. Schaffer, W. M. and Schaffer, V. M. (1977) The adaptive significance of variations in reproductive habit in Agavaceae. InEvolutionary Ecology (B. Stonehouse, ed.). Macmillan, London.Google Scholar
  23. Schaffer, W. M. and Schaffer, V. M. (1979) The adaptive significance of variation in reproductive habit in the Agavaceae. II. Pollinator foraging behavior and selection for increased reproductive expenditure.Ecology 60, 1051–69.Google Scholar
  24. Schaffer, W. M. and Rosenzweig, M. L. (1977) Selection for optimal life histories. II. Multiple equilibria and the evolution of alternate reproductive strategies.Ecology 58, 60–72.Google Scholar
  25. Smith, A. P. (1983) Population dynamics of VenezuelanEspeletia. Smithson.Contrib. Bot. 48, 1–45.Google Scholar
  26. Spira, T. P. and Pollak, O. D. (1986) Comparative reproductive biology of alpine biennial and perennial gentians (Gentiana: Gentianaceae) in California.Amer. J. Bot. 73, 39–79.Google Scholar
  27. Struik, G. O. (1965) Growth patterns in some native annual and perennial herbs in southern Wisconsin.Ecology 46, 401–20.Google Scholar
  28. Sutherland, S. D. (1982) The pollination biology of paniculate agaves: documenting the importance of male fitness in plants. PhD diss., University of Arizona, Tucson.Google Scholar
  29. Udovic, D. (1981) Determinants of fruit set inYucca whipplei: reproductive expenditure vs pollinator availability.Oecologia 48, 389–99.Google Scholar
  30. Udovic, D. and Acker, C. L. (1981) Fruit abortion and the regulation of fruit number inYucca whipplei.Oecologia 49, 245–8.Google Scholar
  31. Van Andel, J. and Vera, F. (1977) Reproductive allocation inSenecio sylvaticus andChamaenerion angustifolium in relation to mineral nutrition.J. Ecol. 65, 747–58.Google Scholar
  32. Young, T. P. (1981) A general model of comparative fecundity for semelparous and iteroparous species.Amer. Natur. 118, 27–36.Google Scholar
  33. Young, T. P. (1982) Bird visitation, seed set, and germination rates in twoLobelia species on Mount Kenya.Ecology 68, 1983–6.Google Scholar
  34. Young, T. P. (1984) Comparative demography of semelparousLobelia telekii and iteroparousLobelia keniensis on Mount Kenya.J. Ecol. 72, 637–50.Google Scholar
  35. Young, T. P. (1985)Lobelia telekii herbivory, mortality, and size at reproduction: variation with growth rate.Ecology 66, 1879–83.Google Scholar
  36. Young, T. P. (1990) The population biology of Mount Kenya Lobelias. InTropical Alpine Environments — Plant Form and Function. (P. Rundel, ed.). Springer-Verlag, Berlin.Google Scholar

Copyright information

© Chapman and Hall Ltd. 1990

Authors and Affiliations

  • Truman P. Young
    • 1
  1. 1.Department of BotanyUniversity of CaliforniaDavisUSA

Personalised recommendations