Advertisement

Solar Physics

, Volume 93, Issue 2, pp 415–434 | Cite as

Interpretation of3He abundance variations in the solar wind

  • M. A. Coplan
  • K. W. Ogilvie
  • P. Bochsler
  • J. Geiss
Articles

Abstract

The ion composition instrument (ICI) on ISEE-3 has observed the isotopes of helium of mass 3 and 4 in the solar wind almost continuously between August 1978 and July 1982. This period included the increase towards the maximum of solar activity cycle 21, the maximum period, and the beginning of the descent towards solar minimum. Observations were made when the solar wind speed was between 300 and 620 km s−1. For part of the period evidence for regular interplanetary magnetic sector structure was clear and a number of3He flares occurred during this time.

The long-term average4He++/3He++ flux ratio 〉R〈, was 2050 ± 200, a agreement with a previously reported result obtained using part of this data set, and in very good agreement with the previous measurements made over much shorter periods of time with the foil technique. The 〉R〈 values for 6-month intervals show statistically significant differences. The highest of these values is 2300 and coincides with the solar maximum of cycle 21 indicating that at solar maximum there may be changes in the character and rate of occurrence of short-term variations in 〉R〈. We also find that 〉R〈 drops under conditions of low proton flux in the solar wind, and that it is high when solar wind speeds are lowest.

At solar wind speeds above ∼400 km s−1R〈 is nearby constant at about 2000; at lower speeds it is larger and more variable, in agreement with the idea that the sources of high and low speed wind are different. At times of sector boundary current sheet crossings, identified with coronal streamers, there is a characteristic rise in the value of 〉R〈 indicating an encounter with a plasma with reduced3He++ abundance. Autocorrelations have been computed for4He++ and3He++ and indicate correlation times of about 14 and 20 hr, respectively. Periods of duration of about one day whenR is less than 1000 tend to coincide with the observation of compound streams.

The possibility of detectable increases in3He++ flux in plasma which left the Sun at the time of3He flares has been investigated, but no significant increase was seen.

Keywords

Solar Wind Current Sheet Solar Minimum Solar Maximum Flux Ratio 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Audouze, J.: 1981, paper presented atStudy Week on Cosmology and Fundamental Physics, Vatican.Google Scholar
  2. Bame, S. J., Hundhausen, A. J., Asbridge, J. R., and Strong, I. B.: 1968,Phys. Rev. Letters 20, 393.Google Scholar
  3. Bame, S. J., Asbridge, J. R., Feldman, W. C., and Golsing, J. T.: 1977,J. Geophys. Res. 82, 1487.Google Scholar
  4. Bochsler, P.: 1983,Solar Wind Five, NASA C.P.-2280, p. 613.Google Scholar
  5. Borrini, G. and Noci, G.: 1979,Solar Phys. 64, 367.Google Scholar
  6. Borrini, G., Gosling, J. T., Bame, S. J., Feldman, W. C., and Wilcox, J. M.: 1981,J. Geophys. Res. 86, 4565.Google Scholar
  7. Borrini, G., Gosling, J. T., Bame, S. J., and Feldman, W. C.: 1983,Solar Phys. 83, 367.Google Scholar
  8. Bühler, F., Eberhardt, P., Geiss, J., and Schwarzmuller, J.: 1971,Earth Planet. Sci. Letters 10, 297.Google Scholar
  9. Coplan, M. A., Ogilvie, K. W., Bochsler, P. A., and Geiss, J.: 1978,Trans. Geosci. Electron., IEEE Trans. Geosci. Electron. GE-16, 185.Google Scholar
  10. Eberhardt, P., Geiss, J., and Gröhler, N.: 1965a,Tschermaks mineralogische und petrographische Mitteilungen 10, 535.Google Scholar
  11. Eberhardt, P., Geiss, J., Grögler, N.: 1965b,J. Geophys. Res. 70, 4375.Google Scholar
  12. Eberhardt, P., Geiss, J., Graf, H., Grögler, N., Mendi, M. D., Morgeli, M., Schwaller, H., and Stettler, A.: 1972,Proc. 3rd Lunar Sci. Conf., Houston, Vol. 2, p. 1921, Pergamon Press.Google Scholar
  13. Fisk, L.: 1978,Astrophys. J. 224, 1048.Google Scholar
  14. Garrard, T. L., Stone, E. C., and Vogt, R. E.: 1973, in R. Ramty and R. G. Stone (eds.),High Energy on the Sun Symposium Proceedings, NASA SP-342., p. 341.Google Scholar
  15. Geiss, J.: 1973,Proc. 14th Int. Cosmic Ray Conf., Denver5, 3375.Google Scholar
  16. Geiss, J.: 1982,Space Sci. Rev. 33, 201.Google Scholar
  17. Geiss, J. and Bochsler, P.: 1982,Proc. 4th Solar Wind. Conf., Burghausen, Max-Planck-Institut für Aeronomie, Lindau, F.R.G.Google Scholar
  18. Geiss, J., Hirt, P. and Leutwyler, H.: 1970,Solar Phys. 12, 458.Google Scholar
  19. Geiss, J., Bühler, F., Cerutti, H., Eberhardt, P., and Filleaux, C.: 1972,Apollo 16 Prel. Sci. Rep., pp. 14.1–14.10, NASA SP-315.Google Scholar
  20. Gosling, J. T., Borrini, G., Asbridge, J. R., Bame, S. J., Feldman, W. C., and Hansen, R. T.: 1981,J. Geophys. Res. 86, 5483.Google Scholar
  21. Gumbel, E. J.: 1958,Statistics of Extremes, Columbia University Press, N.Y., Chapter 1.Google Scholar
  22. Grünwaldt, H.: 1976,Space Research 16, 681, Academie-Verlag, Berlin.Google Scholar
  23. Hall, D. N. B.: 1975,Astrophys. J. 197, 509.Google Scholar
  24. Hintenberger H., Vilcsek, E., and Wänke, H.: 1965,Z. Naturforschg. 20a, 939.Google Scholar
  25. Hirshberg, J., Alksne, A., Colburn, D. S., Bame, S. J., and Hundhausen, A. J.: 1970,J. Geophys. Res. 75, 1.Google Scholar
  26. Hollweg, J.: 1981,J. Geophys. Res. 87, 8899.Google Scholar
  27. Howard, R. A. and Koomen, M. J.: 1974,Solar Phys. 37, 469.Google Scholar
  28. Hsieh, K. C. and Simpson, J. A.: 1970,Astrophys. J. 162, L191.Google Scholar
  29. Ibragimov, I. A. and Kocharov, G. E.: 1977,Proc. 15th Int. Cosmic Ray Conf., Plovdiv12, 221.Google Scholar
  30. Kunz, S., Bochsler, P., Geiss, J., Coplan, M. A., and Ogilvie, K. W.: 1983,Solar Phys. 88, 359.Google Scholar
  31. Neugebauer, M.: 1981, in M. Neugebauer (ed.),Solar Wind Four, Report No. MAPE-W-100-81-31, p. 425.Google Scholar
  32. Neugebauer, M. and Snyder, C. W.: 1966,J. Geophys. Res. 71, 4469.Google Scholar
  33. Ogilvie, K. W. and Burlaga, L. F.: 1974,J. Geophys. Res. 79, 2324.Google Scholar
  34. Ogilvie, K. W., Coplan, M. A., Bochsler, P., and Geiss, J.: 1980a,J. Geophys. Res. 85, 6021.Google Scholar
  35. Ogilvie, K. W., Bochsler, P., Geiss, J., and Coplan, M. A.: 1980b,J. Geophys. Res. 85, 6069.Google Scholar
  36. Pneuman, G. W., and Kopp, R. A.: 1970,Solar Phys. 13, 176.Google Scholar
  37. Reames, D. V.: 1982, private communication.Google Scholar
  38. Reames, D. V. and von Rosenvinge, T.: 1981,Proc. 17th Int. Cosmic Ray Conf. 3, 162.Google Scholar
  39. Schatzman, E. and Maeder, A.: 1981,Astron. Astrophys. 96, 1.Google Scholar
  40. Schmidt, W. K. H., Rosenbauer, H., Shelly, E. G., and Geiss, J.: 1980,Geophys. Res. Letters 7, 697.Google Scholar
  41. Sugiura, M.: 1983, private communication.Google Scholar
  42. Wänke, H.: 1965,Z. Naturforschg. 20a, 946.Google Scholar
  43. Warasila, R. L. and Schaeffer, A.: 1974,Earth Planet. Sci. Letters 24, 71.Google Scholar
  44. Zähringer, J.: 1962,Geochim. Cosmochim. Acta 26, 665.Google Scholar

Copyright information

© D. Reidel Publishing Company 1984

Authors and Affiliations

  • M. A. Coplan
    • 1
  • K. W. Ogilvie
    • 2
  • P. Bochsler
    • 3
  • J. Geiss
    • 3
  1. 1.Institute for Physical Science and TechnologyUniversity of MarylandUSA
  2. 2.Goddard Space Flight CenterGreenbelt
  3. 3.Physikalisches InstitutUniversity oif BernSwitzerland

Personalised recommendations