Evolutionary Ecology

, Volume 3, Issue 3, pp 264–272 | Cite as

The constraints of digestive rate: An alternative model of diet selection

  • Chris Verlinden
  • R. Haven Wiley


A general model is developed to predict diet selection when digestive capacity is limited and when food items differ in digestibility and digestive turnover time. Under these conditions, in order to maximize the rate of energy acquisition, animals should maximize digestive rate, by selecting food with high digestibility and rapid passage through the digestive tract. They should spend as much time as they have available to search for this food. These and other predictions differ from those of the widely used Contingency Model, which maximizes the rate of ingestion of energy. Many experiments in the literature have not discriminated between predictions of these two models. Moreover, clarification of the conditions under which these two general models apply leads to a new perspective on the diversity of foraging behavior in animals.


Foraging theory diet selection digestion optimality herbivory 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Barnard, C. J. and Brown, C. A. (1981) Prey size selection and competition in the Common Shrew (Sorex araneus L.).Behav. Ecol. Sociobiol. 8, 239–43.Google Scholar
  2. Belovsky, G. E. (1978) Diet optimization in a generalist herbivore, the moose.Theor. Pop. Biol. 14, 105–34.Google Scholar
  3. Belovsky, G. E. (1984) Herbivore optimal foraging: a comparative test of three models.Amer. Natur. 124, 97–115.Google Scholar
  4. Caraco, T., Martindale, S. and Whittam, T. S. (1980) An empirical demonstration of risk-sensitive foraging preferences.Anim. Behav. 33, 216–24.Google Scholar
  5. Cederlund, G., Ljungqvist, H., Markgren, G. and Stalfelt, F. (1980) Foods of moose and roe deer at Grimsoe in Central Sweden—results of rumen content analyses.Swed. Wildlife Res. Viltrevy 11, 169–274.Google Scholar
  6. Charnov, E. L. (1976) Optimal foraging: attack strategy of a mantid.Amer. Natur. 110, 141–51.Google Scholar
  7. Clutton-Brock, T. H., Guinnes, F. E. and Albon, S. D. (1982)Red Deer: Behavior and Ecology of Two Sexes. University of Chicago Press, Chicago, USA.Google Scholar
  8. Demment, H. W. and Van Soest, P. J. (1983)Body Size, Digestive Capacity, and Feeding Strategies of Herbivores. Winrock International Livestock Research Publications, Morrilton, Arkansas, USA.Google Scholar
  9. Demment, H. W. and Van Soest, P. J. (1985) A nutritional explanation for body-size patterns of ruminant and nonruminant herbivores.Amer. Natur. 125, 641–72.Google Scholar
  10. Drozdz, A. (1979) Seasonal intake and digestibility of natural foods by roe deer.Acta Ther. 24/13, 137–70.Google Scholar
  11. Gaare, E., Sorensen, A. and White, R. G. (1977) Are rumen samples representative of the diet?Oikos 29, 390–5.Google Scholar
  12. Gebczynska, Z. (1980) Food of the roe deer and red deer in the Bialowieza primeval forest.Acta Ther. 25/40, 487–500.Google Scholar
  13. Gray, R. (1987) Faith and foraging: a critique of the ‘paradigm argument from design’.Foraging Behavior. A. C. Kamil, J. R. Krebs and H. R. Pulliam (eds), pp. 69–140. Plenum, New York and London.Google Scholar
  14. Harestad, A. S. and Bunnell, F. L. (1979) Home range and body weight: a reevaluation.Ecology 60, 389–402.Google Scholar
  15. Illius, A. W. and Gordon, I. J. (1987) The allometry of food intake in grazing ruminants.J. Anim. Ecol. 56, 989–99.Google Scholar
  16. Jaeger, R. G. and Barnard, D. E. (1981) Foraging tactics of a terrestrial salamander: choice of diet in structurally simple environments.Amer. Natur. 117, 639–64.Google Scholar
  17. Jarman, P. J. (1974) The social organization of antelope in relation to their ecology.Behaviour 48, 215–67.Google Scholar
  18. Kamil, A. C., Krebs, J. R. and Pulliam, H. R. (eds) (1987)Foraging Behavior. Plenum, New York and London.Google Scholar
  19. Krebs, J. R., Ryan, J. and Charnov, E. L. (1974) Hunting by expectation or optimal foraging? A study of patch use by chickadees.Anim. Behav. 22, 953–64.Google Scholar
  20. Krebs, J. R., Stephens, D. W. and Sutherland, W. J. (1983) Perspectives in optimal foraging.Perspectives in Ornithology. A. H. Brush and G. A. Clark, Jr (eds), pp. 165–216. Cambridge University Press, UK.Google Scholar
  21. Krebs, J. R., Avery, M. I. and Houston, A. I. (1987) Delivering food to a central place: three studies of bee-eaters (Merops apiaster).Foraging Behavior 173–91. Plenum, New York and London.Google Scholar
  22. Lucas, J. R. (1983) The role of foraging time constraints and variable prey encounter in optimal diet choice.Amer. Natur. 122, 191–209.Google Scholar
  23. Lucas, J. R. (1985) Time constraints and diet choice: different predictions from different constraints.Amer. Natur. 126, 680–705.Google Scholar
  24. Lucas, J. R. (1987) Foraging time constraints and diet choice.Foraging Behavior. A. C. Kamil, J. R. Krebs and H. R. Pulliam (eds), pp 239–69. Plenum, New York and London.Google Scholar
  25. McNamara, J. M. and Houston, A. I. (1987) Partial preferences and foraging.Anim. Behav. 35, 1084–99.Google Scholar
  26. Orians, G. H. and Pearson, N. E. (1979) On the theory of central place foraging.Analysis of Ecological Systems. D. J. Horn, G. R. Stairs and R. Mitchell (eds), pp 155–77. Ohio State University Press, Columbus, USA.Google Scholar
  27. Owen-Smith, N. and Novellie, P. (1982) What should a clever ungulate eat?Amer. Natur. 119, 151–78.Google Scholar
  28. Penry, D. L. and Jumars, P. A. (1987) Modeling animal guts as chemical reactors.Amer. Natur. 129, 69–96.Google Scholar
  29. Pulliam, H. R. (1974) On the theory of optimal diet.Amer. Natur. 108, 59–75.Google Scholar
  30. Pyke, G. H. (1984) Optimal foraging theory: a critical review.Ann. Rev. Ecol. Syst. 15, 523–75.Google Scholar
  31. Pyke, G. H., Pulliam, H. R. and Charnov, E. L. (1977) Optimal foraging: a selective review of theory and tests.Q. Rev. Biol. 52, 137–54.Google Scholar
  32. Sorensen, A. E. (1984) Nutrition, energy and passage time: experiments with fruit preference in European blackbirds (Turdus merula).J. Anim. Ecol. 53, 545–57.Google Scholar
  33. Stearns, S. C. and Schmid-Hempel, G. (1987) Evolutionary insights should not be wasted.Oikos 49, 118–25.Google Scholar
  34. Stephens, D. W. (1985) How important are partial preferences?Anim. Behav. 33, 667–9.Google Scholar
  35. Stephens, D. W. and Krebs, J. R. (1986)Foraging Theory. Princeton University Press, Princeton, NJ, USA.Google Scholar
  36. Waser, P. M. and Wiley, R. H. (1980) Mechanisms and evolution of spacing in animals.Handbook of Behavioral Neurobiology, Vol. 3. P. Marler and J. G. Vandenbergh (eds), pp 159–223. Plenum, New York and London.Google Scholar
  37. Westoby, M. (1974) An analysis of diet selection by large generalist herbivores.Amer. Natur. 108, 291–304.Google Scholar

Copyright information

© Chapman and Hall Ltd 1989

Authors and Affiliations

  • Chris Verlinden
    • 1
  • R. Haven Wiley
    • 1
  1. 1.Department of BiologyUniversity of North CarolinaChapel HillUSA

Personalised recommendations