Evolutionary Ecology

, Volume 3, Issue 3, pp 253–263 | Cite as

Haploid and diploid survival differences demonstrate selection in scale insect demes

  • D. N. Alstad
  • G. F. EdmundsJr


Black pineleaf scale insect populations are subdivided into genetically differentiated demes associated with individual pine trees. A comparison of sex ratios early and late in the life cycle demonstrated differences in the mortality experienced by haploid males and diploid females. Hatching ratios were significantly female-biased, and differential mortality increased this bias in ratios estimated just before adult male eclosion. The relative survival of males and females varied with overall mortality, causing a correlation between local densities and the surviving sex ratio. We suggest (a) that the genetic differentiation of scale demes results in part from selection pressures associated with individual pine trees, (b) that this differentiation entails an accumulation of locally adaptive traits within the scale subpopulation on each tree, (c) that expression of these adaptations in the haploid and diploid sexes may vary with their frequencies, and (d) that the surviving sex ratio thus offers a comparative measure of selection and the local adaptation achieved by the insects in individual demes.


Ploidy Nuculaspis californica scale insect demes sex ratio 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alstad, D. N. and Corbin, K. W. Allozyme variation associated with local differentiation of scale insect demes on individual host trees (in review, 25 ms pp).Google Scholar
  2. Alstad, D. N., Edmunds, G. F. Jr and Johnson, S. C. (1980) Host adaptation sex ratio, and flight activity in male black pineleaf scale.Ann. Ent. Soc. Amer. 73, 665–7.Google Scholar
  3. Alstad, D. N. and Edmunds, G. F. Jr (1983a) Selection, outbreeding depression, and the sex ratio of scale insects.Science 220, 93–5.Google Scholar
  4. Alstad, D. N. and Edmunds, G. F. Jr (1983b) Adaptation, host specificity and gene flow in the black pineleaf scale.Variable Plants and Herbivores in Natural and Managed Systems. R. F. Denno and M. S. McClure (eds), pp 413–26. Academic Press, New York, USA.Google Scholar
  5. Alstad, D. N. and Edmunds, G. F. Jr (1987) Black pineleaf scale population density in relation to interdemic mating (Hemiptera: Diaspididae).Ann. Ent. Soc. Amer. 7, 532–6.Google Scholar
  6. Brown, S. W. (1958) Haplodiploidy in the Diaspididae — confirmation of an evolutionary hypothesis.Evolution 12, 115–16.Google Scholar
  7. Brown, S. W. and McKenzie, H. L. (1962) Evolutionary patterns in the armored scale insects and their allies.Hilgardia 33, 140–70.Google Scholar
  8. Bull, J. J. (1983)Evolution of Sex Determining Mechanisms. Benjamin/Cummings, Menlo Park, CA, 316 pp.Google Scholar
  9. Bulmer, M. G. and Taylor, P. D. (1980) Dispersal and the sex ratio.Nature 284, 448–9.Google Scholar
  10. Charlesworth, B. and Toro, M. A. (1982) Female-biased sex ratios,Nature 298, 494.Google Scholar
  11. Charnov, E. L. (1982) The theory of sex allocation.Princeton University Press Monographs in Population Biology No. 18, 355 pp.Google Scholar
  12. Colwell, R. K. (1981) Group selection is implicated in the evolution of female-biased sex ratios.Nature 290, 401–4.Google Scholar
  13. Edmunds, G. F. Jr (1973) Ecology of black pineleaf scale (Homoptera: Diaspididae).Envir. Ent. 2, 765–77.Google Scholar
  14. Edmunds, G. F. Jr and Alstad, D. N. (1978) Coevolution in insect herbivores and conifers.Science 199, 941–5.Google Scholar
  15. Edmunds, G. F. Jr and Alstad, D. N. (1981) Responses of Black Pineleaf Scales to host plant variability.Insect Life History Patterns. R. F. Denno and H. Dingle (eds), pp 29–38. Springer-Verlag, New York, USA.Google Scholar
  16. Edmunds, G. F. Jr and Alstad, D. N. (1984) High summer mortality of black pineleaf scale (Homoptera: Diaspididae).Pan. Pac. Ent. 60, 267–8.Google Scholar
  17. Endler, J. A. (1986) Natural selection in the wild.Princeton University Press, Monographs in Population Biology No. 21, 336 pp.Google Scholar
  18. Ferris, G. F. (1937–1955)Atlas of the Scale Insects of North America. Stanford University Press, Stanford, CA, USA.Google Scholar
  19. Furniss, R. L. and Carolin, V. M. (1977) Western Forest Insects.USDA Forest Service Mic. Pub. No. 1339.Google Scholar
  20. Haldane, J. B. S. (1924) A mathematical theory of natural and artificial selection. Part I.Trans. Camb. Phil. Soc. 23, 19–41.Google Scholar
  21. Hamilton, W. D. (1967) Extraordinary sex ratios.Science 156, 477–88.Google Scholar
  22. Harvey, P. H., Partridge, L. and Nunney L. (1985) Group selection and the sex ratio.Nature 313, 10–11.Google Scholar
  23. Herre, E. A. (1985) Sex ratio adjustment in fig wasps.Science 228, 896–8.Google Scholar
  24. Kacser, H. and Burns, J. A. (1981) The molecular basis of dominance.Genetics 97, 639–66.Google Scholar
  25. Linhart, Y. B., Mitton, J. B., Sturgeon, K. B., and Davis, M. L. (1979) An analysis of genetic architecture in populations of ponderosa pine.Pr. Symp. on Isozymes of North American Forest Trees and Forest Insects. USDA Forest Service, 27 July 1979, Berkeley.Google Scholar
  26. Linhart, Y. B., Mitton, J. B., Sturgeon, K. B. and Davis, M. L. (1981) Genetic variation in space and time in a poulation of ponderosa pine.Heredity 46, 407–26.Google Scholar
  27. Maynard Smith, J. M. (1978)The Evolution of Sex. Cambridge University Press, UK, 222 pp.Google Scholar
  28. Merrill, D. J. (1968) The evolutionary role of dominant genes.Genetics Lectures, Vol. I R. Bogart (ed.) Oregon State University Press, Corvallis, USA.Google Scholar
  29. Mitton, J. B. (1983) Conifers.Isozymes in Plant Genetics and Breeding Part B. S. D. Tanksley and T. J. Orton (eds), pp 443–72. Elsevier Science Publishers B. V., Amsterdam.Google Scholar
  30. Mitton, J. B., Linhart, Y. B., Davis, M. L. and Sturgeon, K. B. (1981) Estimation of outcrossing in ponderosa pine,Pinus ponderosa Laws., from patterns of segregation of protein polymorphisms and from frequencies of albino seedlings.Silvae Genetica 30, 117–21.Google Scholar
  31. Nunney, L. (1985a) Female-biased sex ratios: individual or group selection?Evolution 39, 349–61.Google Scholar
  32. Nunney, L. (1985b) Group selection, altruism, and structured-deme models.Amer. Natur. 126, 212–30.Google Scholar
  33. Nur, U. (1967) Reversal of heterochromatization and the activity of the paternal chromosome set in the male mealy bug.Genetics 56, 375–89.Google Scholar
  34. Stoetzel, M. B. and Davidson, J. A. (1974) Sexual dimorphism in all stages of the Aspidiotini (Homoptera: Diaspididae).Ann. Ent. Soc. Amer. 67, 138–40.Google Scholar
  35. Sturgeon, K. B. (1979) Monoterpene variation in ponderosa pine xylem resin in relation to western pine beetle predation.Evolution 33, 803–14.Google Scholar
  36. Taylor, P. D. and Bulmer, M. G. (1980) Local mate competition and the sex ratio.J. Theor. Biol. 86, 409–19.Google Scholar
  37. Tippins, H. H. and Howell, J. O. (1973) A new genus and species of Diaspididae (Homoptera: Coccoidea) from Georgia.Ann. Ent. Soc. Amer. 66, 399–403.Google Scholar
  38. Turner, J. R. G. (1981) Adaptation and evolution inHeliconius: a defense of neoDarwinism.Ann. Rev. Ecol. Syst. 12, 99–121.Google Scholar
  39. Werren, J. H. (1980) Sex ratio adaptations to local mate competition in a parasitic wasp.Science 208, 1157–9.Google Scholar
  40. Wilson, D. S. (1983) The group selection controversy: history and current status.Ann. Rev. Ecol. Syst. 14, 159–87.Google Scholar
  41. Wilson, D. S. and Colwell, R. K. (1981) Evolution of sex ratio in structured demes.Evolution 35, 882–97.Google Scholar

Copyright information

© Chapman and Hall Ltd 1989

Authors and Affiliations

  • D. N. Alstad
    • 1
  • G. F. EdmundsJr
    • 2
  1. 1.Department of Ecology & Behavioral BiologyUniversity of MinnesotaMinneapolisUSA
  2. 2.Department of BiologyUniversity of UtahSalt Lake CityUSA

Personalised recommendations