Advertisement

Chromatographia

, Volume 5, Issue 11, pp 275–277 | Cite as

The separation of glycine and all peptides from diglycine up to heptaglycine by a cation exchange resin

An explanation for the elution order
  • H. A. Billiet
Short Communications

Summary

An analytical technique has been developed for the separation and quantitative determination of glycine peptides, from glycine to heptaglycine, with a possible extension to octaglycine and nonaglycine. Using an amino acid analyzer, a cation exchange resin and a citrate buffer of pH 3.35 (gradient elution is not required), the complete separation takes 3 hours 30 minutes. The quantitative precision is about 3%.

The elution order can be explained on the basis of two mechanisms:
  • - the pKa-values determine the positions of glycine up to tetraglycine

  • - tetraglycine up to heptaglycine, with equal pKa-values, follow Andrews' equation, Ve=a−b log M, derived for gel chromatography.

Keywords

Peptide Chromatography Analytical Chemistry Organic Chemistry Citrate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Trennung der Glyzin-Peptide von Diglyzin bis zu Heptaglyzin an einer Kationen-Austauschersäule

Eine Erklärung für die Elutionsfolge

Séparation de la glycine et de tous les peptides de la diglycine à l'heptaglycine sur colonne d'échangeur de cations

Explication de l'ordre d'élution

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature

  1. [1]
    H. C. Beyerman, E. W. B. de Leer, W. van Vossen, Chem. Commun. in press.Google Scholar
  2. [2]
    E. Ehrhardt, F. Cramer, J. Chromatog.,7, 405 (1962).Google Scholar
  3. [3]
    A. G. Cook, A. L. Levy, J. Chem. Soc., 1950, 646.Google Scholar
  4. [4]
    L. C. Dorman, L. D. Markley, D. A. Mapes, Anal. Biochem.,39, 492 (1971).PubMedGoogle Scholar
  5. [5]
    Ch. B. Kasper, Protein Sequence Determination (ed.S. B. Needleman), Springer Verlag, Berlin, (1970).Google Scholar
  6. [6]
    D. Eaker, J. Porath, Sepn. Sci.,2, 507 (1967).Google Scholar
  7. [7]
    P. B. Hamilton, Anal. Chem.,35, 2055 (1963).Google Scholar
  8. [8]
    A. R. Mitchell, R. W. Roeske, J. Org. Chem.,35, 1171 (1970).PubMedGoogle Scholar
  9. [9]
    K. Hannig, Clin. Chim. Acta,4, 51 (1959).CrossRefPubMedGoogle Scholar
  10. [10]
    H. Rosen, C. W. Berard, S. M. Levenson, Anal. Biochem.,4, 213 (1962).PubMedGoogle Scholar
  11. [11]
    J. P. Greenstein, M. Winitz, Chemistry of the Amino Acids, Vol I, p. 488, J. Wiley, New York (1961).Google Scholar
  12. [12]
    P. Andrews, Biochem. J.,91, 222 (1964).PubMedGoogle Scholar
  13. [13]
    R. L. Pecsok, D. Saunders, Sepn. Sci.,1, 613 (1966).Google Scholar
  14. [14]
    W. W. Yau, C. P. Malone, H. L. Suchan, Sepn. Sci.,5, 259 (1970).Google Scholar
  15. [15]
    K. J. Bombaugh, Modern Practice of Liquid Chromatography (ed.J. J. Kirkland) Wiley Interscience, N. Y. (1971), p. 244.Google Scholar
  16. [16]
    S. M. Partridge, Nature169, 496 (1952).PubMedGoogle Scholar
  17. [17]
    G. N. Catravas, Anal. Chem.,36, 1146 (1964).Google Scholar
  18. [18]
    D. H. Spackman, W. H. Stein, S. Moore, Anal. Chem.,30, 1190 (1958).CrossRefGoogle Scholar

Copyright information

© Friedr. Vieweg & Sohn GmbH 1972

Authors and Affiliations

  • H. A. Billiet
    • 1
  1. 1.Laboratorium voor Analytische ScheikundeTechnische HogeschoolDelftThe Netherlands

Personalised recommendations