Chromatographia

, Volume 5, Issue 11, pp 275–277 | Cite as

The separation of glycine and all peptides from diglycine up to heptaglycine by a cation exchange resin

An explanation for the elution order
  • H. A. Billiet
Short Communications

Summary

An analytical technique has been developed for the separation and quantitative determination of glycine peptides, from glycine to heptaglycine, with a possible extension to octaglycine and nonaglycine. Using an amino acid analyzer, a cation exchange resin and a citrate buffer of pH 3.35 (gradient elution is not required), the complete separation takes 3 hours 30 minutes. The quantitative precision is about 3%.

The elution order can be explained on the basis of two mechanisms:
  • - the pKa-values determine the positions of glycine up to tetraglycine

  • - tetraglycine up to heptaglycine, with equal pKa-values, follow Andrews' equation, Ve=a−b log M, derived for gel chromatography.

Keywords

Peptide Chromatography Analytical Chemistry Organic Chemistry Citrate 

Trennung der Glyzin-Peptide von Diglyzin bis zu Heptaglyzin an einer Kationen-Austauschersäule

Eine Erklärung für die Elutionsfolge

Séparation de la glycine et de tous les peptides de la diglycine à l'heptaglycine sur colonne d'échangeur de cations

Explication de l'ordre d'élution

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature

  1. [1]
    H. C. Beyerman, E. W. B. de Leer, W. van Vossen, Chem. Commun. in press.Google Scholar
  2. [2]
    E. Ehrhardt, F. Cramer, J. Chromatog.,7, 405 (1962).Google Scholar
  3. [3]
    A. G. Cook, A. L. Levy, J. Chem. Soc., 1950, 646.Google Scholar
  4. [4]
    L. C. Dorman, L. D. Markley, D. A. Mapes, Anal. Biochem.,39, 492 (1971).PubMedGoogle Scholar
  5. [5]
    Ch. B. Kasper, Protein Sequence Determination (ed.S. B. Needleman), Springer Verlag, Berlin, (1970).Google Scholar
  6. [6]
    D. Eaker, J. Porath, Sepn. Sci.,2, 507 (1967).Google Scholar
  7. [7]
    P. B. Hamilton, Anal. Chem.,35, 2055 (1963).Google Scholar
  8. [8]
    A. R. Mitchell, R. W. Roeske, J. Org. Chem.,35, 1171 (1970).PubMedGoogle Scholar
  9. [9]
    K. Hannig, Clin. Chim. Acta,4, 51 (1959).CrossRefPubMedGoogle Scholar
  10. [10]
    H. Rosen, C. W. Berard, S. M. Levenson, Anal. Biochem.,4, 213 (1962).PubMedGoogle Scholar
  11. [11]
    J. P. Greenstein, M. Winitz, Chemistry of the Amino Acids, Vol I, p. 488, J. Wiley, New York (1961).Google Scholar
  12. [12]
    P. Andrews, Biochem. J.,91, 222 (1964).PubMedGoogle Scholar
  13. [13]
    R. L. Pecsok, D. Saunders, Sepn. Sci.,1, 613 (1966).Google Scholar
  14. [14]
    W. W. Yau, C. P. Malone, H. L. Suchan, Sepn. Sci.,5, 259 (1970).Google Scholar
  15. [15]
    K. J. Bombaugh, Modern Practice of Liquid Chromatography (ed.J. J. Kirkland) Wiley Interscience, N. Y. (1971), p. 244.Google Scholar
  16. [16]
    S. M. Partridge, Nature169, 496 (1952).PubMedGoogle Scholar
  17. [17]
    G. N. Catravas, Anal. Chem.,36, 1146 (1964).Google Scholar
  18. [18]
    D. H. Spackman, W. H. Stein, S. Moore, Anal. Chem.,30, 1190 (1958).CrossRefGoogle Scholar

Copyright information

© Friedr. Vieweg & Sohn GmbH 1972

Authors and Affiliations

  • H. A. Billiet
    • 1
  1. 1.Laboratorium voor Analytische ScheikundeTechnische HogeschoolDelftThe Netherlands

Personalised recommendations