Skip to main content
Log in

The metabolism of monocarbon compounds in the mammal with special reference to formic acid

  • Published:
Ergebnisse der Physiologie Biologischen Chemie und Experimentellen Pharmakologie

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Abrams, A., andH. Borsook: The conversion of L-histidine to glutamic acid by liver enzymes. J. of Biol. Chem.198, 205 (1951).

    Google Scholar 

  2. Agnes, K., andK. E. Belfrage: Colorimetric determination of methanol in blood. Acta physiol. scand. (Stockh.)13, 87 (1947).

    Article  Google Scholar 

  3. Alexander, N., andD. M. Greenberg: Studies on the biosynthesis of serine. J. of Biol. Chem.214, 821 (1955).

    CAS  Google Scholar 

  4. Anderson, E. I., andJ. A. Stekol: Vitamin B12 and folic acid in the biosynthesis of component amino acids of glutathione. J. of Biol. Chem.202, 611 (1953).

    CAS  Google Scholar 

  5. Anfinsen, C. B., andW. W. Kielley: Biological oxidations. Annual Rev. Biochem.23, 17 (1954).

    Article  CAS  Google Scholar 

  6. Arnstein, H. V. R.: The biosynthesis of choline methyl groups in the rat. Biochemic. J.47, XVIII (1950).

    CAS  Google Scholar 

  7. —: The biosynthesis of choline methyl groups by the rat. Biochemic. J.48, 27 (1951).

    CAS  Google Scholar 

  8. Arnstein, H. V. R., andA. Neuberger: The effect of cobalmin on the quantitative utilization of serine, glycine and formate for the synthesis of choline and methyl groups of methionine. Biochemic. J.55, 259 (1953).

    CAS  Google Scholar 

  9. ——: The synthesis of glycine and serine by the rat. Biochemic. J.55, 271 (1953).

    CAS  Google Scholar 

  10. Aschoff, L.: Zur chemischen Kenntnis der Wacholderbeeren. Arch. Pharmazie.90, 272 (1844).

    Article  Google Scholar 

  11. Asser, E.: Über Änderung der Methylalkoholoxydation durch andere Alkohole. Arch. exper. Path. u. Ther.15, 322 (1914).

    Article  CAS  Google Scholar 

  12. Bach, S. J.: Experiments on the metabolism of glycine. Biochemic. J.33, 90 (1939).

    CAS  Google Scholar 

  13. —: The metabolism of protein constituents in the mammalian body. Oxford: Clarendon Press 1952.

    Google Scholar 

  14. Barclay, R. K., E. Garfinkel andC. C. Stock: The influence of N-methylformamide on C14 formate incorporation. J. of Biol. Chem.208, 875 (1954).

    CAS  Google Scholar 

  15. Battelli, F., u.L. Stern: Die Oxydationsfermente. Erg. Physiol.12, 96 (1912).

    Google Scholar 

  16. Baur, E.: Über das Gleichgewicht von Formaldehyde mit Glykokoll. Helvet. chim. Acta23, 233 (1940).

    Article  CAS  Google Scholar 

  17. Bennett, M. A.: Some observations on the role of folic acid in utilization of homocystine by the rat. Science (Lancaster, Pa.)110, 589 (1949).

    CAS  Google Scholar 

  18. Bennett, M. A., G. Medes andG. Toennies: Growth of albino rats on a cholinefree diet in which homocystine is the only S-containing amino acid. Growth7, 251 (1943);8, 59 (1944).

    Google Scholar 

  19. Berg, P.: Synthesis of labile methyl groups by guinea pig tissuein vitro. J. of Biol. Chem.190, 31 (1951).

    CAS  Google Scholar 

  20. —: A study of formate utilization in pigeon liver extract. J. of biol. Chem.205, 145 (1953).

    CAS  Google Scholar 

  21. Bernheim, F.: The effect of aminoguanidine on the oxidation of formaldehyde by rat liver. J. of Biol. Chem.186, 225 (1950).

    CAS  Google Scholar 

  22. Binkley, F., andV. du Vigneaud: The formation of cysteine from homocysteine and serine by liver tissue of rat. J. of Biol. Chem.144, 597 (1942).

    Google Scholar 

  23. Blakley, R. L.: Tetrahydropteroylglutamic acid in serine synthesis and degradation. Nature (Lond.)173, 729 (1954).

    Article  CAS  Google Scholar 

  24. Block, K., andD. Rittenberg: Some aspects of the metabolism of leucine and valine. J. of Biol. Chem.155, 255 (1944).

    Google Scholar 

  25. Borek, B. A., andH. Waelsch: The enzymatic degradation of histidine. J. of Biol. Chem.205, 459 (1953).

    CAS  Google Scholar 

  26. Broquist, H. P.: Involvement ofcitrovorum factor in synthesis of histidine in yeast. Federat. Proc.11, 191 (1952).

    Google Scholar 

  27. —,M. J. Fahrenbach, J. A. Brockman jr., E. L. R. Stocksted andT. H. Jukes: “Citrovorum factor” activity of tetrahydropteroylglutamic acid. J. Amer. Chem. Soc.73, 3535 (1951).

    Article  CAS  Google Scholar 

  28. —,A. R. Kohler, D. I. Hutchison andJ. H. Burchenal: Studies of the enzymatic formation ofcitrovorum factor bystreptococcus faecalis. J. of Biol. Chem.202, 59 (1953).

    CAS  Google Scholar 

  29. Brouwer, E., andH. J. Nijkamp: Volatile acids in urine. Acta physiol. pharmacol. Neerl. (Amsterd.)1, 44 (1950).

    CAS  Google Scholar 

  30. Buchanan, J. M., andM. P. Schulman: Reactions of formate and inosinic acid and an effect of thecitrovorum factor. J. of Biol. Chem.202, 241 (1953).

    CAS  Google Scholar 

  31. —, andJ. C. Sonne: Utilization of formate in uric acid synthesis. J. of Biol. Chem166, 78 (1946).

    Google Scholar 

  32. Butenandt, A., W. Weidel, R. Weichert u.W. v. Derjugin: Über Kynurenin. Hoppe-Seylers. Z.279, 27 (1943).

    Article  CAS  Google Scholar 

  33. Chantrenne, H., andF. Lipmann: Coenzyme A dependence and acetyl donor function of the pyruvate-formate exchange system. J. of Biol. Chem.187, 757 (1950).

    CAS  Google Scholar 

  34. Clarke, H. T., H. B. Gillespie andS. Z. Weisshaus: Action of formaldehyde upon cysteine. J. Amer. Chem. Soc.55, 4571 (1933).

    Article  CAS  Google Scholar 

  35. Coon, M. J.: The metabolic fate of the isopropyl group of leucine. J. of Biol. Chem.187, 71 (1950).

    CAS  Google Scholar 

  36. Daft, F. S., M. Silverman, H. Tabor, A. H. Mehler andH. Bauer: Relationship of histidine to the excretion of a glutamic acid derivative in folic acid-deficient rats. Federat. Proc.12, 411 (1953).

    Google Scholar 

  37. Dakin, H. D.: Oxidations and reductions in the animal body. Monograph in Biochemistry. London a. New York 1922.

  38. —,N. W. Janney andA. J. Wakeman: Studies on the conditions affecting the formation and excretion of formic acid. J. of Biol. Chem.14, 341 (1913).

    CAS  Google Scholar 

  39. Dalgliesh, C. E.: The synthesis of N-formyl-DL-kynurenine, N-acetyl-DL-kynurenine and related compounds, and observations on the synthesis of kynurenine. J. Chem. Soc.1952, 137.

  40. —: The relation between pyridoxin and tryptophan metabolism, studied in the rat. Biochemic. J.52, 3 (1952).

    CAS  Google Scholar 

  41. Dietrich, L. S., W. J. Monson andC. A. Elvehjem: Folic acid, leucoverin, vitamin B12 and the excretion of N-methylnicotinamide. J. of Biol. Chem.199, 765 (1952).

    CAS  Google Scholar 

  42. Droller, H.: Detection of small quantities of formic acid in blood and tissues. Hoppe-Seylers Z.211, 57 (1932).

    Article  CAS  Google Scholar 

  43. Drysdale, G. R., G. W. E. Plaut andH. A. Lardy: The relationship of folic acid to formate metabolism in the rat: formate incorporation into purines. J. of Biol. Chem.193, 533 (1951).

    CAS  Google Scholar 

  44. Edlbacher, S.: Histidase und Urocinase. Erg. Enzymforsch.9, 131 (1943).

    CAS  Google Scholar 

  45. —, u.J. Kraus: Zur Kenntnis des intermediären Stoffwechsels des Histidins. Hoppe-Seylers Z.191, 225 (1930).

    Article  CAS  Google Scholar 

  46. —, u.M. Neber: Zur Kenntnis des intermediären Stoffwechsels des Histidins. Hoppe-Seylers Z.224, 261 (1934).

    Article  CAS  Google Scholar 

  47. Elwyn, D., andD. Sprinson: The extensive synthesis of the methyl groups of thymine in the adult rat. J Amer. Chem. Soc.72, 3317 (1950).

    Article  CAS  Google Scholar 

  48. ——: The relation of folic acid to the metabolism of serine. J. of Biol. Chem.184, 475 (1950).

    CAS  Google Scholar 

  49. —,A. Weissbach andD. B. Sprinson: The synthesis of methyl groups from serine and its “bearing on the metabolism of one-carbon fragments”. J. Amer. Chem. Soc.73, 5509 (1951).

    Article  CAS  Google Scholar 

  50. Felts, J. M., I. L. Chaikoff andM. J. Osborn: Insulin and the fate of acetate and formate in the diabetic liver. J. of Biol. Chem.193, 557 (1951).

    CAS  Google Scholar 

  51. Ferger, M. F., andV. du Vigneaud: Oxidationin vivo of the methyl groups of choline, betaine, dimethylthetin and dimethyl-β-propiothetin. J. of Biol. Chem.185, 53 (1950).

    CAS  Google Scholar 

  52. Friedmann, B., H. I. Nakada andS. Weinhouse: A study of the oxidation of formic acid in the folic acid-deficient rat. J. of Biol. Chem.210, 413 (1954).

    CAS  Google Scholar 

  53. Gerngross, O., u.S. J. Bach: Über die Verschiebung des isoelektrischen Punktes der Gelatine durch Formaldehyd. Biochem. Z.143, 533 (1923).

    CAS  Google Scholar 

  54. Gillis, M. B., andL. C. Norris: Methylation of homocystine by chicks deficient in vitamin B12. Proc. Soc. Exper. Biol. a. Med.77, 13 (1951).

    CAS  Google Scholar 

  55. Goldthwait, D. A., andA. Bendich: Effects of a folic acid antagonist on nucleic acid metabolism. J. of Biol. Chem.196, 841 (1952).

    CAS  Google Scholar 

  56. Gordon, M., J. M. Ravel, R. E. Eakin andW. Shive: Formylfolic acid, a functional derivative of folic acid. J. Amer. Chem. Soc.70, 878 (1948).

    Article  CAS  Google Scholar 

  57. Gortner, R. A., andG. E. Holm: Acid hydrolysis of proteins in the presence of formaldehyde. J. Amer. Chem. Soc.39, 2477 (1917).

    Article  CAS  Google Scholar 

  58. Greenberg, G. R.:De novo synthesis of hypoxanthinevia inosine-5-phosphate and inosine. J. of Biol. Chem.190, 611 (1951).

    CAS  Google Scholar 

  59. Greenberg, G. R.: Conversion of 5-amino-4-imidazolecarboxamide riboside to its phosphoribotide and to inosinic acid. Federat. Proc.12, 211 (1953).

    Google Scholar 

  60. —: A formylation cofactor. J. Amer. Chem. Soc.76, 1458 (1954).

    Article  CAS  Google Scholar 

  61. Handler, P., M. L. C. Bernheim andJ. R. Klein: The oxidative demethylation of sarcosine to glycine. J. of Biol. Chem.138, 211 (1941).

    CAS  Google Scholar 

  62. Heinrich, M. R., andD. W. Wilson: The biosynthesis of nucleic acid components studied with C14. J. of Biol. Chem.186, 447 (1950).

    CAS  Google Scholar 

  63. Hift, H., andH. R. Mahler: The enzymatic condensation of pyruvate and formaldehyde. J. of Biol. Chem.198, 901 (1952).

    CAS  Google Scholar 

  64. Hoesslin, H. v.: Über den Abbau des Cholins im Tierkörper. Hoffmeisters Beitr.8, 27 (1906).

    Google Scholar 

  65. Hunter, A.: On urocanic acid. J. of Biol. Chem.11, 537 (1912).

    Google Scholar 

  66. Jakoby, W. B.: Kynurenine formamidase fromNeurospora. J. of Biol. Chem.207, 657 (1954).

    CAS  Google Scholar 

  67. Jonsson, S., andW. A. Mosher: Thein vivo synthesis of labile methyl groups. J. Amer. Chem. Soc.72, 3316 (1950).

    Article  CAS  Google Scholar 

  68. Jukes, T. H., W. Shive, J. M. Buchanan, D. W. Wilson andG. R. Greenberg: Symposium on relationships between certain B-vitamins and purines and pyrimidines. Federat. Proc.12, 633–659 (1953).

    CAS  Google Scholar 

  69. Karlsson, J L., andH. A. Barker: Biosynthesis of uric acid labelled with radioactive carbon. J. of Biol. Chem.177, 597 (1949).

    CAS  Google Scholar 

  70. Keeser, E., u.E. Vincke: Über die Bildung von Formaldehyd beim Abbau des Methylalkohols. Klin. Wschr.19, 583 (1940).

    Article  Google Scholar 

  71. Keller, E. B., J. R. Rachele andV. du Vigneaud: A study of transmethylation with methionine containing deuterium and C14 in the methyl group. J. of Biol. Chem.177, 733 (1949).

    CAS  Google Scholar 

  72. Kendal, L. P., andA. N. Ramanathan: Excretion of formate after methanol injection in man. Biochemic. J.54, 424 (1953).

    CAS  Google Scholar 

  73. Keresztesy, J. C., andM. Silverman: Crystallinecitrovorum factor from liver. J. Amer. Chem. Soc.73, 5510 (1951).

    Article  CAS  Google Scholar 

  74. ——: Enzymatic cleavage of the citrovorum factor. J. Amer. Chem. Soc.75, 1512 (1953).

    Article  CAS  Google Scholar 

  75. Kisliuk, R. L., andW. Sakami: The stimulation of serine biosynthesis in pigeon liver extracts by tetrahydrofolic acid. J. Amer. Chem. Soc.76, 1456 (1954).

    Article  CAS  Google Scholar 

  76. Knox, E., andA. H. Mehler: The coupled tryptophan peroxidase-oxidase system forming formylkynurenine. J. of Biol. Chem.187, 419 (1950).

    CAS  Google Scholar 

  77. Kotake, Y., u.J. Iwao: Studien über den intermediären Stoffwechsel des Tryptophans. Hoppe-Seylers Z.195, 139 (1931).

    Article  CAS  Google Scholar 

  78. —, u.M. Konishi: Über die Bildung der Urokaninsäure aus Histidin im Hundeorganismus. Hoppe-Seylers Z.122, 230 (1922).

    Article  CAS  Google Scholar 

  79. Kratzer, F. H.: The relation of vitamin B12 to the methylation of homocystine in poults. J. of Biol. Chem.203, 367 (1953).

    CAS  Google Scholar 

  80. Kruhøffer, P.: On the role played by formate in serine biosynthesis. Biochemic. J.48, 604 (1951).

    Google Scholar 

  81. Levy, L., andM. J. Coon: The role of formate in the biosynthesis of histidine. J. of Biol. Chem.192, 807 (1951).

    CAS  Google Scholar 

  82. ——: Biosynthesis of histidine from radioactive acetate and glucose. J. of Biol Chem.208, 691 (1954).

    CAS  Google Scholar 

  83. Levy, M.: The acidity of formaldehyde and the end point in the formol titration. J. of Biol. Chem.105, 157 (1934).

    CAS  Google Scholar 

  84. —, andD. E. Silberman: The reaction of amino and imino acids with formaldehyde. J. of Biol. Chem.118, 723 (1937).

    CAS  Google Scholar 

  85. Ling, K.-H., andT.-C. Tung: The oxidative demethylation of monomethyl-L-amino acids. J of Biol. Chem.174, 643 (1948).

    CAS  Google Scholar 

  86. Mackenzie, C. G.: Formation of formaldehyde and formate in the bioxidation of the methyl group. J. of Biol. Chem.186, 351 (1950).

    CAS  Google Scholar 

  87. —,J. M. Johnson andW. R. Frisell: The isolation of formaldehyde from dimethylaminoethanol, dimethylglycine, sarcosine and methanol. J. of Biol. Chem.203, 743 (1953).

    CAS  Google Scholar 

  88. Marsh, W. H.: On the biosynthesis of purines in the bird; role of formate. J. of Biol. Chem.190, 633 (1951).

    CAS  Google Scholar 

  89. Matsuoka, Z., u.N. Yoshimatsu: Über eine neue Substanz, die aus Tryptophan im Tierkörper gebildet wird. Hoppe-Seylers Z.143, 206 (1925).

    Article  CAS  Google Scholar 

  90. Mehler, A. H., andE. Knox: The enzymatic hydrolysis of formylkynurenine. J. of Biol. Chem.187, 431 (1950).

    CAS  Google Scholar 

  91. Meltzer, H. L., andD. B. Sprinson: The synthesis of 4-C14, N15-L-threonine and a study of its metabolism. J. of Biol. Chem.197, 461 (1952).

    CAS  Google Scholar 

  92. Miller, C. S., S. Gurin andD. W. Wilson: C14 labelled 4(5)-amino-5(4)-immidazole-carboxamide in the biosynthesis of purines. Science (Lancaster, Pa.)112, 654 (1950).

    CAS  Google Scholar 

  93. Mistry S. P., I. Vadopalaite I. Chang, J. Firth andB. C. Johnson: Vitamin B12 and transmethylation in pig, chick, and rat liver homogenates. J. of Biol. Chem.212, 713 (1955).

    CAS  Google Scholar 

  94. Mitoma, C., andD. Greenberg: Precursors of beta carbon of serine and of methionine methyl group. Federat. Proc.10, 225 (1951).

    Google Scholar 

  95. Mosbach, E. H., E. F. Phares andS. F. Casson: The role of one-carbon compounds in citric acid biosynthesis. Arch. of Biochem. a. Biophysics35, 435 (1952).

    Article  CAS  Google Scholar 

  96. Muntz, J. A.: The inability of choline to transfer a methyl group directly to homocysteine for methionine formation. J. of Biol. Chem.182, 489 (1950).

    CAS  Google Scholar 

  97. Nichol, C. A.: The effect of ascorbic acid on the enzymatic formation of thecitrovorum factor. J. of Biol. Chem.204, 469 (1953).

    CAS  Google Scholar 

  98. —, andA. D. Welch: Synthesis ofcitrovorum factor from folic acid by liver slices; augmentation by ascorbic acid. Proc. Soc. Exper. Biol. a. Med.72, 52 (1950).

    Google Scholar 

  99. Oyamada, Y.: Enzymic decomposition of histidine. J. of Biochem.36, 227 (1944).

    CAS  Google Scholar 

  100. Page, E., andF. Martel: The beneficial effect of folic acid in glycine-intoxicated rats showing neither anaemia nor leucopaenia. Abstracts, 1. Internat. Congr. of Biochemistry, p. 74. Cambridge, Aug. 1949.

  101. Plaut, G. W. E., J. J. Betheil andH. A. Lardy: The relationship of folic acid to formate metabolism in the rat. J. of Biol. Chem.184, 795 (1950).

    CAS  Google Scholar 

  102. —, andH. A. Lardy: Incorporation of the carbons of acetone, formate and carbonate into acetoacetate. J. of Biol. Chem.186, 705 (1950).

    CAS  Google Scholar 

  103. Pohl, J.: Über die Oxydation des Methyl- und Aethylalkohols im Tierkörper. Arch. exper. Path. u. Pharmakol.31, 281 (1893).

    Article  Google Scholar 

  104. Price, T. D., andD. Rittenberg: The metabolism of acetone. J. of Biol. Chem.185, 449 (1950).

    CAS  Google Scholar 

  105. Ratner, S., andH. T. Clarke: The action of formaldehyde on amines and amino acids. J. Amer. Chem. Soc.59, 200 (1937).

    Article  CAS  Google Scholar 

  106. Rauen, H. M., u.L. Jaenicke: Über “aktivierte Aminosäure” und die fermentative Transformylierung. Hoppe-Seylers Z.293, 46 (1953).

    Article  Google Scholar 

  107. —,W. Stamm u.K. H. Kimbel: N-12-Formylfolsäure als fermentatives Umwandlungsprodukt der Folsäure. Hoppe-Seylers Z.289, 80 (1951).

    Article  Google Scholar 

  108. Ravel, J. M., R. E. Eakin andW. Shive: Glycine, a precursor of 5(4)-amino-4(5) imidazolecarboxamide. J. of Biol. Chem.172, 67 (1948).

    CAS  Google Scholar 

  109. Reid, J. C., andM. O. Landefeld: Synthesis of purines and methyl groups from carbon atom 2 of histidine. Arch. of Biochem. a. Biophysics34, 219 (1951).

    Article  CAS  Google Scholar 

  110. Ressler, C., J. R. Rachele andV. du Vigneaud: Studiesin vivo on labile methyl synthesis with Deuterio-C14-formate. J. of Biol. Chem.197, 1 (1952).

    CAS  Google Scholar 

  111. Rose, W. C., W. J. Haines, D. T. Warner andJ. E. Johnson: The amino acid requirements of man. J of Biol. Chem.188, 49 (1951).

    CAS  Google Scholar 

  112. Sakami, W.: The conversion of formate and glycine to serine and glycogen in the intact rat. J. of Biol. Chem.176, 995 (1948).

    CAS  Google Scholar 

  113. —: The conversion of glycine into serine in the intact rat. J. of Biol. Chem.178, 519 (1949).

    CAS  Google Scholar 

  114. —: The formation of the β-carbon of serine from choline methyl groups. J. of Biol. Chem.179, 495 (1949).

    CAS  Google Scholar 

  115. —: Formation of formate and labile methyl groups from acetone in the intact rat. J. of Biol. Chem.187, 369 (1950).

    CAS  Google Scholar 

  116. —, andJ. M. Lafaye: The metabolism of acetone in the intact rat. J. of Biol. Chem.193, 199 (1951).

    CAS  Google Scholar 

  117. —, andA. D. Welch: Synthesis of labile methyl groups by the ratin vivo andin vitro. J. of Biol. Chem.187, 379 (1950).

    CAS  Google Scholar 

  118. Salkowski, E.: Entstehung der Ameisensäure im Organismus. Hoppe-Seylers Z.104, 161 (1919).

    Article  CAS  Google Scholar 

  119. Sauberlich, H. E., andL. A. Baumann: A factor required for the growth ofleuconostoc citrovorum. J. of Biol. Chem.176, 165 (1948).

    CAS  Google Scholar 

  120. Schaefer, A. E., andJ. L. Knowles: Influence of vitamin B12 and folacin on the synthesis of choline and methionine by the rat. Proc. Soc. Exper. Biol. a. Med.77, 655 (1951).

    CAS  Google Scholar 

  121. —,W. D. Salmon, D. R. Strength andD. H. Copeland: Interrelationship of folacin, vitamin B12 and choline. J. Nutrit.40, 95 (1950).

    PubMed  CAS  Google Scholar 

  122. Schulman, M. P., andJ. M. Buchanan: Metabolism of 4-amino-5-imidazolecarboxamide in pigeon liver. J. of Biol. Chem.196, 513 (1952).

    CAS  Google Scholar 

  123. —,J. M. Buchanan andC. S. Miller: Precursors of purine. Federat. Proc.9, 225 (1950).

    Google Scholar 

  124. Shemin, D.: The biological conversion of L-serine to glycine. J. of Biol. Chem.162, 297 (1946).

    CAS  Google Scholar 

  125. —, andJ. Wittenberg: The mechanism of porphyrin formation. J. of Biol. Chem.192, 315 (1951).

    CAS  Google Scholar 

  126. Shive, W., W. W. Ackermann, M. Gordon, M. E. Getzendaner andR. E. Eakin: 5(4)-amino-4(5)-imidazolecarboxamide, a precursor of purines. J. Amer. Chem. Soc.69, 725 (1947).

    Article  CAS  Google Scholar 

  127. Siegel, I., andI. Lafaye: Formation of the β-carbon of serine from formaldehyde. Proc. Soc. Exper. Biol. a. Med.74, 620 (1950).

    CAS  Google Scholar 

  128. Siekevitz, P., andD. M. Greenberg: The biological formation of serine from glycine. J. of Biol. Chem.180, 845 (1949).

    CAS  Google Scholar 

  129. ——: The biological formation of formate from methyl compounds in liver slices. J. of Biol. Chem.186, 275 (1950).

    CAS  Google Scholar 

  130. Silverman, M., J. C. Keresztesy andG. J. Koval: Isolation of N-10-formylformic acid. J. of Biol. Chem.211, 53 (1954).

    CAS  Google Scholar 

  131. Skipper, H. F., J. H. Mitchell andL. L. Bennett: Inhibition of nucleic acid synthesis by folic acid antagonists. Cancer Res.10, 510 (1950).

    PubMed  CAS  Google Scholar 

  132. Smith, A. K., P. Handler andJ. N. Mrgudich: Reaction of formaldehyde with amino acids. J. Physic. Chem.44, 874 (1940).

    Article  CAS  Google Scholar 

  133. Smith, E. L.: Water-soluble vitamins, part. I. Annual Rev. Biochem.23, 258 (1954).

    Google Scholar 

  134. Soucy, R., andL. P. Bouthillier: Metabolic fate of the 2-atom of the imidazole nucleus in the histidine molecule, studied by means of radiocarbon. Rev. Canad. Biol.10, 290 (1951).

    CAS  Google Scholar 

  135. Sprinson, D. B., andD. Rittenberg: The metabolic reactions of carbon atom 2 of L-histidine. J. of Biol. Chem.198, 655 (1952).

    CAS  Google Scholar 

  136. Stekol, J. A., andK. Weiss: Vitamin B12 and growth of rats on diets free of methionine and choline. J. of Biol. Chem.186, 343 (1950).

    CAS  Google Scholar 

  137. —,K. Weiss andS. Weiss: On the origin of the carbon chain of cysteine. J. of Biol. Chem.185, 271 (1950).

    CAS  Google Scholar 

  138. Stekol, J. A., K. Weiss andS. Weiss: Role of folacin and vitamin B12 in synthesis and utilization of choline by the rat as studied with C-14 glycine, formate and methionine. Federat. Proc.10, 252 (1951).

    Google Scholar 

  139. —,S. Weiss andK. Weiss: Vitamin B12 and folic acid in the synthesis of choline in the rat. Arch. of Biochem. a. Biophysics36, 5 (1952).

    Article  CAS  Google Scholar 

  140. —,P. T. Hsu, S. Weiss andP. Smith: Labile methyl group and its synthesisde novo in relation to growth in chicks. J. of Biol. Chem.203, 763 (1953).

    CAS  Google Scholar 

  141. —,S. Weiss, B. Hsu andP. Smith: Utilization of methionine-CH3-C14, glycine-2-C14, serine-3-C14 and formate-C14 for the synthesis of choline and creatine by chicks, weanling rats and mice. Federat. Proc.11, 292 (1952).

    Google Scholar 

  142. ——,P. Smith andK. Weiss: The synthesis of choline and creatine in rats under various dietary conditions. J. of Biol. Chem.201, 299 (1953).

    CAS  Google Scholar 

  143. Steppuhn, O., u.H. Schellbach: Über die Ameisensäure als Zwischenprodukt der tierischen Zuckerspaltung. Hoppe-Seylers Z.80, 274 (1912).

    Article  Google Scholar 

  144. Stetten, D.: Biological relationships of choline, ethanolamine and related compounds. J. of Biol. Chem.140, 143 (1941).

    CAS  Google Scholar 

  145. —: The fate of dietary serine in the body of the rat. J. of Biol. Chem.144, 501 (1942).

    CAS  Google Scholar 

  146. Stetten, M. R., andC. L. Fox jr.: An amine formed by bacteria during sulfonamide bacteriostasis. J. of Biol. Chem.161, 333 (1945).

    CAS  Google Scholar 

  147. Stokes, J. L.: Substitution of thymine for “folic acid” in the nutrition of lactic acid bacteria. J. Bacter.48, 201 (1944).

    CAS  Google Scholar 

  148. Strength, D. R., E. A. Schaefer andW. D. Salmon: The relation of vitamin B12 and folacin to the utilization of choline and its precusors for lipotropism and renal protection in rats. J. Nutrit.45, 329 (1951).

    PubMed  CAS  Google Scholar 

  149. Tabor, H., A. H. Mehler, O. Hayaishi andJ. White: Urocanic acid as an intermediate in the enzymatic conversion of histidine to glutamic and formic acids. J. of Biol. Chem.196, 121 (1952).

    CAS  Google Scholar 

  150. Theorell, H., u.R. Bonnichsen: Studies on liver alcohol dehydrogenase. Acta chem. scand. (Copenh.)5, 1127 (1951).

    Article  CAS  Google Scholar 

  151. Thudicum, J. L. W.: Über Essigsäure, Ameisensäure und vermutliche Schweflige Säure und Salpetrige Säure aus Menschenharn. Pflügers Arch.15, 12 (1877).

    Article  Google Scholar 

  152. Toenniesen, E., u.E. Brinkmann: Über den Abbau der niederen Fettsäuren. Hoppe-Seylers Z.252, 169 (1938).

    Article  Google Scholar 

  153. Toepfer, E. W., E. G. Zook, M. L. Orr andL. R. Richardson: Folic acid content of food. Agr. Handbook., U.S. Department of Agriculture Washington, D. C.29, 1 (1951).

    Google Scholar 

  154. Tomiyama, T.: The nature of the reaction which takes place between certain amino acids and formaldehyde. J. of Biol. Chem.111, 51 (1935).

    CAS  Google Scholar 

  155. Toporek, M., L. L. Miller andW. F. Bale: Carbon atom 2 of L-histidine-2C14, a source of the carbon of labile methyl groups in liver. J. of Biol. Chem.198, 839 (1952).

    CAS  Google Scholar 

  156. Totter, J. R.: Abstr. a. chem. Soc. 124. Meeting, 34C–35C, Chicago, Ill., Sept. 1953.

  157. —,E. Volkin andC. E. Carter: Incorporation of isotopic formate into nucleotides of ribo-and desoxyribonucleic acids. J. Amer. Chem. Soc.73, 1521 (1951).

    Article  CAS  Google Scholar 

  158. —,B. Kelley, P. L. Day andR. R. Edwards: The metabolism of glycine by folic acid-deficient chick liver homogenates. J. of Biol. Chem.186, 145 (1950).

    CAS  Google Scholar 

  159. Verly, W. G., J. M. Kinney andV. du Vigneaud: Effect of folic acid and leucovorin on the synthesis of the labile methyl group from methanol in the rat. J. of Biol. Chem.196, 19 (1952).

    CAS  Google Scholar 

  160. —,J. E. Wilson, J. M. Kinney andJ. R. Rachele: Action of vitamin B12 and folic acid on labile methyl synthesis in the rat. Federat. Proc.10, 264 (1951).

    Google Scholar 

  161. du Vigneaud, V., andW. G. Verly: Incorporationin vivo of C14 from labelled methanol into the methyl groups of choline. J. Amer. Chem. Soc.72, 1049 (1950).

    Article  Google Scholar 

  162. du Vigneaud, V., C. Ressler andJ. R. Rachele: The biological synthesis of “labile methyl groups”. Science (Lancaster, Pa.)112, 267 (1950).

    Google Scholar 

  163. —,S. Simmonds andM. Cohn: A further investigation of the ability of sarcosine to serve as a labile methyl donor. J. of Biol. Chem.166, 47 (1946).

    Google Scholar 

  164. —,W. G. Verly andJ. E. Wilson: Incorporation of the carbon of formaldehyed and formate into the methyl groups of choline. J. Amer. Chem. Soc.72, 2819 (1950).

    Article  Google Scholar 

  165. —,J. P. Chandler, A. W. Moyer andD. M. Keppel: Effect of choline on the ability of homocystine to replace methionine in the diet. J. of Biol., Chem.131, 57 (1939).

    Google Scholar 

  166. —,G. W. Kilmer, J. R. Rachele andM. Cohn: On the mechanism of the conversionin vivo of methionine to cystine. J. of Biol. Chem.155, 645 (1944).

    Google Scholar 

  167. —,S. Simmonds, J. P. Chandler andM. Cohn: Synthesis of labile methyl groups in the white rat. J. of Biol. Chem.159, 755 (1945).

    Google Scholar 

  168. ——,J. P. Chandler andM. Cohn: A further investigation of the role of betaine in transmethylation reactionsin vivo. J. of Biol. Chem.165, 639 (1946).

    Google Scholar 

  169. —,C. Ressler, J. Rachele, J. A. Reyniers andJ. R. Lucky: The synthesis of “biologically labile” methyl groups in the germ-free rat. J. Nutrit.45, 361 (1951).

    Google Scholar 

  170. —,W. G. Verly, J. E. Wilson, J. R. Rachele, C. Ressler andJ. M. Kinney: One carbon compounds in the biosynthesis of the “biologically labile” methyl groups. J. Amer. Chem. Soc.73, 2782 (1951).

    Article  Google Scholar 

  171. Wadsworth, A., andM. C. Pangborn: The reaction of formaldehyde with amino acids. J. of Biol. Chem.116, 423 (1936).

    CAS  Google Scholar 

  172. Walker, A. C., andC. L. A. Schmidt: Studies on Histidase. Arch. of Biochem. a. Biophysics5, 445 (1944).

    CAS  Google Scholar 

  173. Waser, E.: Detection and determination of formic acid in meat extracts. Hoppe-Seylers Z.99, 69 (1917).

    Article  Google Scholar 

  174. Weinhouse, S., andB. Friedmann: Metabolism of labelled 2-carbon acids in the intact rat. J. of Biol. Chem.191, 707 (1951).

    CAS  Google Scholar 

  175. ——: Study of precursors of formate in the intact rat. J. of Biol. Chem.197, 733 (1952).

    CAS  Google Scholar 

  176. ——: A study of formate production in normal and folic acid-deficient rats. J. of Biol. Chem.210, 423 (1954).

    CAS  Google Scholar 

  177. Weisblat, D. I., B. J. Magerlein, A. R. Hanze, D. R. Myers andS. T. Rolfson: Synthesis of pteroic and pteroylglutamic acids. J. Amer. Chem. Soc.75, 3625 (1953).

    Article  CAS  Google Scholar 

  178. Weissbach, A., D. Elwyn andD. Sprinson: The synthesis of the methyl groups and ethanolamine moiety of choline from serine and glycine in the rat. J. Amer. Chem. Soc.72, 3316 (1950).

    Article  CAS  Google Scholar 

  179. Welch, A. D., andC. A. Nichol: Water-soluble vitamins concerned with one- and two-carbon intermediates. Annual Rev. Biochem.21, 633 (1952).

    Article  CAS  Google Scholar 

  180. Wickremasinghe, R. L., andB. A. Fry: The formation of urocanic acid and glutamic acid in the fermentation of histidine byclostridium tetanomorphum. Biochemic. J.58, 268 (1954).

    CAS  Google Scholar 

  181. Williams jr.,J. N., W. J. Monson, A. E. Harper andC. A. Elvehjem: Further studies on the relationship of vitamin B12 to enzymes in rat liver. J. of Biol. Chem.202, 607 (1953).

    CAS  Google Scholar 

  182. Winkler, K. C., andP. G. de Haan: On the action of sulphanilamide. Arch. of Biochem. a. Biophysics18, 97 (1948).

    CAS  Google Scholar 

  183. Wolf, G.: The metabolism of α-C14-histidine in the intact rat. J. of Biol. Chem.200, 637 (1953).

    CAS  Google Scholar 

  184. Woods, D. D.: Relation of p-aminobenzoic acid to the action of sulphanilamide. Brit. J. Exper. Path.21, 74 (1940).

    CAS  Google Scholar 

  185. —: Les sulphamides on tant qu'antagonistes de l'acide p-aminobenzoique. Bull. Soc. Chim. biol. Paris30, 730 (1948).

    CAS  Google Scholar 

  186. Woolley, D. W., andR. B. Pringle: Formation of 4-amino-5-carboxamidoimidazole during growth ofEscherichia Coli in the presence of 4-aminopteroyl glutamic acid. J. Amer. Chem. Soc.72, 634 (1950).

    Article  CAS  Google Scholar 

  187. Yoshita Sera, Daigaku Osaka andZassi Igaku: Physiological decomposition of histidine. Amer. Chem. Abstr.1952, 3591.

  188. Zabin, I., andK. Bloch: The formation of ketone bodies from isovaleric acid. J. of Biol. Chem.185, 117 (1950).

    CAS  Google Scholar 

  189. Zakrzewski, S. F., andC. A. Nichol: The incorporation of formate-C14 intocitrovorum factor. J. of Biol. Chem.213, 697 (1955).

    CAS  Google Scholar 

  190. Zauder, H. C.: Effect of aminoguanidine on formaldehyde poisoning in rats. Proc. Soc. Exper. Biol. a. Med.74, 598 (1950).

    CAS  Google Scholar 

  191. Zeyen, M.: Das Verhalten der Ameisensäureausscheidung im Harn nach Zufuhr von Histidin. Z. klin. Med.120, 128 (1932).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bach-Bristol, S.J. The metabolism of monocarbon compounds in the mammal with special reference to formic acid. Ergebnisse der Physiologie und exper. Pharmakologie 48, 529–574 (1955). https://doi.org/10.1007/BF02270537

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02270537

Navigation