Advertisement

Journal of Oceanography

, Volume 51, Issue 5, pp 499–517 | Cite as

The different behaviour of modeled ocean circulation under an atmosphere with different heat capacity

  • Wenju Cai
Article

Abstract

We examine the difference in modeled thermohaline circulation under an atmosphere with no heat capacity (NHC) and infinite heat capacity (IHC) in a series of numerical experiments using the Bryan/Cox OGCM. An NHC atmosphere allows ocean sea surface temperatures to respond to changes in oceanic poleward heat transport, inferring an atmosphere that is allowed to seek its equilibrium temperature, whereas an IHC atmosphere does not. This is responsible for the following different behaviour patterns under the two atmospheres: 1) under NHC atmosphere, oceanic thermal oscillation persists, whereas under IHC atmosphere it does not; 2) under NHC atmosphere, the oceanic thermohaline circulation is less sensitive to high latitude freshening than under IHC atmosphere; 3) under either atmosphere, multiple equilibrium solutions are possible. However, under NHC atmosphere, two equilibria of the thermohaline circulation are generated in the same way as in the GFDL fully coupled model, while under IHC atmosphere, they are not.

Keywords

Heat Capacity Heat Transport Equilibrium Solution Behaviour Pattern Equilibrium Temperature 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bretherton, F. P. (1982): Ocean climate modeling. p. 93–129. InProgress in Oceanography, Vol. 11, Pergamon.Google Scholar
  2. Bryan, F. (1986): High-latitude salinity effects and interhemispheric thermohaline circulation.Nature,323, 25, 301–304.CrossRefGoogle Scholar
  3. Bryan, F. (1987): Parameter sensitivity of primitive equation ocean general circulation models.J. Phys. Oceanogr.,17, 970–985.CrossRefGoogle Scholar
  4. Bryan, K. (1969): A numerical method for the study of the circulation of the world ocean.J. Comput. Phys.,4, 347–376.CrossRefGoogle Scholar
  5. Bryan, K. (1984): Accelerating the convergence to equilibrium of ocean-climate models.J. Phys. Oceanogr.,14, 666–673.CrossRefGoogle Scholar
  6. Cayan, D. R. (1980): Large scale relationship between sea surface temperature and surface air temperature.Mon. Weather Rev.,108, 1293–1301.CrossRefGoogle Scholar
  7. Cox, M. D. (1987):GFDL Ocean Model Circular No. 7. GFDL/Princeton University. Princeton, N.J., 1 pp.Google Scholar
  8. Delworth, T., S. Manabe and R. J. Stouffer (1993): Interdecadal variations of the thermohaline circulation in a coupled ocean-atmosphere model.J. Climate,6, 1993–2011.CrossRefGoogle Scholar
  9. Dickson, R. R., J. Meincke, S. A., Malmberg and A. L. Lee (1988): “Great salinity anomaly” in the northern North Atlantic, 1968–82.Prog. Oceanogr., 20, 103–151.CrossRefGoogle Scholar
  10. Fujio, S., T. Kadowaki and N. Imasato (1992): World ocean circulation diagnostically derived from hydrographic and wind stress fields: I. The velocity field.J. Geophys. Res.,97, 11, 163–11, 176.Google Scholar
  11. Giese, B. S. and D. R. Cayan (1993): Surface heat flux parameterizations and tropical Pacific sea surface temperature simulations.J. Geophys. Res.,98, 6979–6989.Google Scholar
  12. Haney, L. R. (1971): Surface boundary condition for ocean circulation models.J. Phys. Oceanogr.,1, 241–248.CrossRefGoogle Scholar
  13. Huang, R. X. and L. Chou (1994): Parameter sensitivity study of the saline circulation.Climate Dynamics,9, 391–409.CrossRefGoogle Scholar
  14. Manabe, S. and R. J. Stouffer (1988): Two stable equilibria of a coupled ocean-atmosphere model.J. Climate,1, 841–866.CrossRefGoogle Scholar
  15. Pacanowski, R. C., K. W. Dixon and A. Rosati (1991):GFDL Modular Ocean Model, Users Guide Version 1.0, GFDL Ocean Group Tech. Rep. No. 2, 46 pp.Google Scholar
  16. Philander, S. G. H. and A. D. Seigel (1985): Simulation of El Niño of 1982–83. p. 517–541. InCoupled Ocean-Atmosphere Models, ed. by J. Nihoul, Elsevier, New-York.Google Scholar
  17. Power, S. and R. Kleeman (1993): Multiple equilibria in a global ocean general circulation model.J. Phys. Oceanogr.,23, 1670–1681.CrossRefGoogle Scholar
  18. Sarmiento, J. L. and K. Bryan (1982): An ocean transport model for the North Atlantic.J. Geophys. Res.,87, 394–408.Google Scholar
  19. Schopf, P. S. (1983): On equatorial waves and El Niño. II: Effects of air-sea thermal coupling.J. Phys. Oceanogr.,13, 1878–1893.CrossRefGoogle Scholar
  20. Seager, R., S. E. Zebiak and M. A. Cane (1988): A model for tropical Pacific sea surface temperature climatology.J. Geophys. Res.,93, 1265–1280.Google Scholar
  21. Semtner, A. J. and R. M. Chervin (1988): A simulation of the global ocean circulation with resolved eddies.J. Geophys. Res.,93, 15502–15522.Google Scholar
  22. Stommel, H. (1961): Thermohaline convection with two stable regimes of flow.Tellus,13, 224–230.Google Scholar
  23. Zhang, S., R. J. Greatbatch and C. A. Lin (1993): A re-examination of the polar halocline catastrophe and implications for coupled ocean-atmosphere models.J. Phys. Oceanogr.,23, 287–299.CrossRefGoogle Scholar

Copyright information

© Journal of the Oceanographic Society of Japan 1995

Authors and Affiliations

  • Wenju Cai
    • 1
  1. 1.CSIRO Division of Atmospheric ResearchSpendaleAustralia

Personalised recommendations