Advertisement

Chromatographia

, Volume 40, Issue 7–8, pp 399–403 | Cite as

Chromatographic determination of phosphine (PH3) and hydrogen sulfide (H2S) in the headspace of anaerobic bacterial enrichments using flame photometric detection

  • U. Brunner
  • Th. G. Chasteen
  • P. Ferloni
  • R. Bachofen
Originals

Summary

A gas chromatographic method is presented which distinguishes phosphine from hydrogen sulfide and other possible headspace gases of anaerobic microbial cultures. In anaerobic cultures spiked with phosphine, this gas is recovered in the liquid and gaseous phase down to 10 pg per ml of gas or liquid. No biogenically produced phosphine was found. Phosphine in amounts as small as 30 ng per 1 can be stored for several days in glass bottles covered with rubber septa, filled with nitrogen, in the presence or absence of water or of an anaerobic bacterial culture. Due to the selectivity of the detector and the retention characteristics of the porous layer open tubular polymer column alkanes, alkenes and organosulfur compounds routinely found in anaerobic bacterial headspaces do not interfere with the analytical quantification of phosphine.

Key Words

Gas chromatography Phosphine Flame photometric detection Anaerobic bacteria 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    V. F. Garry, J. Griffith, T. J. Danzl, R. L. Nelson, E. B. Worton, L. A. Krueger, J. Cervenka, Science246, 251 (1989).PubMedGoogle Scholar
  2. [2]
    E. Fluck, The Chemistry of Phosphine, in “Fortschritte der chemischen Forschung, Topics in Current Chemistry”35, Springer, Berlin, 1973; p. 1.Google Scholar
  3. [3]
    IPS, WHO, “PH3 and Selected Metal Phosphides”, Environmental Health Criteria73, World Health Organisation, Geneva, Medizin, Verlag Huber, Bern, 1988.Google Scholar
  4. [4]
    B. Berck, W. E. Westlake, F. A. Gunther, J. Agr. Food Chemistry18, 1 (1970).Google Scholar
  5. [5]
    T. Dumas, E. J. Bond, J. Chromatogr.206, 384 (1981).CrossRefGoogle Scholar
  6. [6]
    A. Bosshard, R. Kamga, F. Raulin, J. Chromatogr.330, 400 (1985).CrossRefGoogle Scholar
  7. [7]
    Th. G. Chasteen, R. Falls, J. W. Birks, H. R. Martin, R. J. Glinski, Chromatographia31, 7/8, 342 (1991).Google Scholar
  8. [8]
    G. Gassmann, S. Dahlke, J. Chromatogr.598, 313 (1992).CrossRefGoogle Scholar
  9. [9]
    G. Gassmann, F. Schorn, Naturwissenschaften80, 78 (1993).CrossRefGoogle Scholar
  10. [10]
    G. Gassmann, D. Glindemann, Angewandte Chemie Internat. Engl. Edition32, 5 (1993).Google Scholar
  11. [11]
    G. Gassmann, Marine Chemistry45 (1994) in press.Google Scholar
  12. [12]
    J. R. Burford, J. M. Bremer, Soil Biology Biochemistry4, 489 (1972).Google Scholar
  13. [13]
    P. Gerhard, R. G. E. Murray, W. A. Wood, N. R. Krieg, Eds., “Methods for General and Molecular Biology”, American Society of Microbiology, Washington DC, 1994; p. 350.Google Scholar
  14. [14]
    B. C. McBride, R. S. Wolfe, Biochemistry10, 4312 (1971).CrossRefPubMedGoogle Scholar
  15. [15]
    U. Karlson, W. T. Frankenberger, in “Metal Ions in Biological Systems29”, H. Sigel and A. Sigel, Eds., Marcel Dekker, New York, 1993; p. 185.Google Scholar
  16. [16]
    T. Hasegawa, S. Taniguchi, M. Mihara, K. Nakamuro, Y. Sayato, Archives of Toxicology68 (2), 91 (1994).CrossRefPubMedGoogle Scholar
  17. [17]
    H. Sigel, A. Sigel, in “Metal Ions in Biological Systems29”, H. Sigel and A. Sigel, Eds., Marcel Dekker, New York, 1993; p. 339.Google Scholar
  18. [18]
    I. Devai, L. Felföldi, I. Wittner, S. Plosz, Nature333, 343 (1988).CrossRefGoogle Scholar
  19. [19]
    J. A. Campbell, R. A. Whiteker, J. Chemical Education46, 90 (1969).Google Scholar
  20. [20]
    L. E. Casida, J. Bacteriology80, 237 (1960).Google Scholar
  21. [21]
    T. L. Foster, L. Winans, S. J. S. Helms, Applied Environment. Microbiol.35, 937 (1978).Google Scholar
  22. [22]
    J. O. Niere, J. M. Griffith, B. R. Grant, J. Gen. Microbiol.136, 147 (1990).PubMedGoogle Scholar
  23. [23]
    R. M. Atlas, R. Bartha, “Microbial Ecology”, Benjamin/Cummings, Redwood, Calif. 1993; p. 375.Google Scholar
  24. [24]
    IISR, “Synthetic Rubber”, International Institute of Synthetic Rubber Producers, New York, 1973; p. 31.Google Scholar

Copyright information

© Friedr. Vieweg & Sohn Verlagsgesellschaft mbH 1995

Authors and Affiliations

  • U. Brunner
    • 1
  • Th. G. Chasteen
    • 2
  • P. Ferloni
    • 1
  • R. Bachofen
    • 1
  1. 1.Institut für Pflanzenbiologie (Mikrobiologie) der Universität ZürichZürichSwitzerland
  2. 2.Department of ChemistrySam Houston State UniversityHuntsvilleUSA

Personalised recommendations