Skip to main content
Log in

Exponential mappings for contact sub-Riemannian structures

  • Published:
Journal of Dynamical and Control Systems Aims and scope Submit manuscript

Abstract

On sub-Riemannian manifolds any neighborhood of any point contains geodesics which are not length minimizers; the closures of the cut and the conjugate loci of any pointq containq. We study this phenomenon in the case of a contact distribution, essentially in the lowest possible dimension 3, where we extract differential invariants related to the singularities of the cut and the conjugate loci nearq and give a generic classification of these singularities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. A. A. Agrachev, Methods of control theory in nonholonomic geometry.Proc. ICM-94, Zürich, Birkhäuser, 1995, 1473–1483.

    Google Scholar 

  2. A. A. Agrachev, El-H. C. El Alaoui, J. -P. Gauthier, and I. Kupka, Generic sub-Riemannian metrics onR 3 Compt. Rend. Acad. Sci. Ser. 1 322 (1996), 377–384.

    Google Scholar 

  3. A. A. Agrachev and R. V. Gamkrelidze, Exponential representation of flows and chronological calculus. (Russian)Mat. sb. 107 (1978) 467–532. (English translation: Math. USSR Sb.29 (1979), 727–785.)

    Google Scholar 

  4. A. A. Agrachev, Symplectic methods for optimization and control (to appear in: Geometry of Feedback and Optimal Control, B. Jakubczyk and W. Respondek. Eds,Marcel Dekker).

  5. A. A. Agrachev, R. V. Gamkrelidze, and A. V. Sarychev, Local invariants of smooth control systems.Acta Appl. Math. 14 (1989), 191–237.

    Google Scholar 

  6. A. A. Agrachev, S. Stefani, and P. L. Zezza, Strong minima in optimal control (in preparation).

  7. V. I. Arnold, Mathematical methods in classical mechanics, Third edition,Nauka, Moscow, 1989.

    Google Scholar 

  8. R. W. Brockett, Control theory and singular Riemannian geometry. In: New Directions in Applied Mathematics, P. J. Hilton and G. S. Young, Eds.Springer Verlag, 1981.

  9. Ge Zhong, Horizontal path space and Carnot-Caratheodory metrics.Pac. J. Math. 161, (1993), 255–286.

    Google Scholar 

  10. M. Golubitsky and V. Guillemin, Stable mappings and their singularities.Springer Verlag, New York, 1973.

    Google Scholar 

  11. M. Gromov, Carnot-Caratheodory spaces seen from within.Preprint IHES/M/94/6, 1994

  12. R. Montgomery, The isoholonomic problem and some applications,Commun. Math. Phys. 128, (1990), 565–592.

    Google Scholar 

  13. A. V. Sarychev, The index of the second variation of a control system.Mat. Sb. 113 (1980) 464–486. (English translation:Math. USSR Sb. 41 (1982) 383–401.)

    Google Scholar 

  14. A. M. Vershik and V. Y. Gershkovich, Nonholonomic dynamical systems. Geometry of distributions and variational problems. (Russian) In: Itogi Nauki i Tekhniki: Sovremennye Problemy Matematiki, Fundamentalnye Napravleniya, Vol. 16,VINITI, Moscow, 1987, 5–85. (English translation) in:Encyclopedia of Math. Sci. 16, Dynamical Systems 7,Springer Verlag).

    Google Scholar 

  15. H. Whitney, On singularities of mappings of Euclidean spaces.Ann. math. 62 (1955).

Download references

Author information

Authors and Affiliations

Authors

Additional information

Partially supported by the Russian Foundation for Fundamental Research, grant 95-01-00310 and by INTAS project 93-893.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Agrachev, A.A. Exponential mappings for contact sub-Riemannian structures. Journal of Dynamical and Control Systems 2, 321–358 (1996). https://doi.org/10.1007/BF02269423

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02269423

1991 Mathematics Subject Classification

Key words and phrases

Navigation